scholarly journals Drug resistant parasites and fungi from a one-health perspective: A global concern that needs transdisciplinary stewardship programs

One Health ◽  
2021 ◽  
pp. 100368
Author(s):  
Stephane Picot ◽  
Frederic Beugnet ◽  
Gilles Leboucher ◽  
Anne-Lise Bienvenu
Author(s):  
SWAGATIKA PRIYADARSINI ◽  
ROHIT SINGH ◽  
ARUN SOMAGOND ◽  
PUJA MECH

Coronavirus disease is the current cause of global concern. The massive outbreak of COVID-19 has led the World Health Organization (WHO) to declare this as a pandemic situation. The Severe Acute Respiratory Syndrome Coronavirus-2 (SARSCoV-2) is responsible for COVID-19 leading to acute respiratory distress and substantial mortality in humans. However, the first laboratory confirmation of SARS-CoV-2 in a pet dog in Hong Kong has shown the possibility of human-to-animal transmission (zooanthroponotic) of the virus. Thereafter, many animals including cat, tiger, lion and mink have also been reported to acquire the virus in several countries. In this situation the role of veterinarian assumes important in treating the animals, helping in food security, disease diagnosis, surveillance and boosting the economy of livestock stakeholders at the grassroot level. In the absence of any selective vaccine or drug against SARS-CoV-2, the world is anticipated to triumph over this pandemic with collaborative, multisectoral, and transdisciplinary approach linking human, animal and environmental health. This article gives an insight into the confirmed SARS-CoV-2 outbreaks in animals, including the factors behind the shuffling of the virus among variety of species and also emphasizes on the role of veterinarian in managing and safeguarding public health so as to pave the way for adopting one health approach in order to conserve biodiversity.


2019 ◽  
Vol 20 (22) ◽  
pp. 5790 ◽  
Author(s):  
Yu-Wei Chang ◽  
Wan-Chun Huang ◽  
Chun-Yu Lin ◽  
Wen-Hung Wang ◽  
Ling-Chien Hung ◽  
...  

The emergence of methicillin-resistant Staphylococcus aureus (MRSA) has become a critical global concern. Identifying new candidates of anti-S. aureus agents is urgently required because the therapeutic strategies for infected patients are limited currently. Therefore, the present study investigated whether Tellimagrandin II (TGII), a pure compound extracted from the shells of Trapa bispinosa, exhibits antibacterial effects against MRSA. We first showed that TGII exerted potent inhibitory activity against MRSA with a minimum inhibitory concentration of 128 μg/mL. The obtained fractional inhibitory concentration suggested that TGII could alone exert antistaphylococcal activity, and TGII combined with low doses of antibiotics displayed synergistic effects against MRSA. Moreover, we found that TGII exerted bactericidal activity by reducing the expression of mecA followed by the negative regulation of the penicillin-binding protein 2a (PBP2a) of MRSA. Transmission electron microscopy (TEM) images further confirmed that TGII destroyed the integrity of the cell wall of MRSA and caused the loss of cytoplasm content. In conclusion, we evidenced the antibacterial effects of TGII against MRSA, which enables the effective dose of current antibiotics to be reduced and the predicament of drug-resistant S. aureus isolates to be overcome.


2020 ◽  
Vol 7 (Supplement_1) ◽  
pp. S716-S717
Author(s):  
Linsey M Donner ◽  
Xu Li ◽  
Daniel D Snow ◽  
Jodi L Sangster ◽  
Zachery R Staley ◽  
...  

Abstract Background Antibiotic resistance is a significant public health threat and widespread use of antibiotics in agriculture is increasing the concern about agricultural contributions to the dissemination of antibiotic resistant bacteria. Of concern is the level of exposure to antibiotics and antibiotic-resistant bacteria in the watershed. Consequently, adopting a One Health approach to measure antibiotic levels and identify antibiotic resistance gene (ARG) transfer at the human, animal and environmental interfaces is essential to better understand how antibiotic resistance is spread. Methods In this project, antibiotic levels were measured using passive organic chemical integrative samplers (POCIS) for 30-day periods from August – November 2018 from Elkhorn River and Shell Creek watersheds in Nebraska (Figure 1). In addition, whole genome sequences of bacterial isolates cultured from the watersheds were assessed to identify ARGs present on mobile genetic elements (MGE) that had >95% similarity to mobile ARG present in isolates recorded in the NCBI GenBank database was identified using ResFinder. Figure 1. Sampling locations within the two watersheds. Results The study demonstrated significant antibiotic levels present throughout the watershed, with five of them associated with human usage (Table 1). In addition, seasonally based drug-resistant bacterial species was associated with specific antibiotic levels in the watershed (Figure 2). Mobile ARGs were detected in 87.5% of isolates collected from the Elkhorn River and 80.0% within Shell Creek (Figure 3). Table 1. Pharmaceutical levels in the watershed Figure 2. Antibiotic levels and drug-resistant bacteria in the watershed Figure 3. Antibiotic resistance observed from each isolate at every sampling date and site. A colored bar denotes that resistance to that antibiotic was observed. Conclusion These results present evidence of transfer of highly mobile ARGs between environment, clinical, and animal-associated bacteria and highlight the need for a One Health perspective in assessing the spread of antibiotic resistance. The presence of significant levels of antibiotics persisting in this agricultural watershed points out the need for ongoing monitoring of compliance with the Food and Drug Administration (FDA) recommendation of veterinarian oversight of the use of antibiotics in the use of veterinary feed directive applications. Disclosures All Authors: No reported disclosures


mBio ◽  
2019 ◽  
Vol 10 (2) ◽  
Author(s):  
William P. Hanage

ABSTRACT How much drug-resistant infections in livestock contribute to disease in humans is controversial. While zoonoses are a prominent cause of emerging infections, and the profligate use of antibiotics as growth promoters is expected to lead to the spread of resistance, this resistance could remain concentrated in animal pathogens and only rarely spill over into humans. A recent paper compares genomes of Escherichia coli isolates from human bloodstream infections in England, focused on the Cambridge area, with isolates collected from farms and the food chain in the east of the country, seeking evidence of transmission (C. Ludden, K. E. Raven, D. Jamrozy, T. Gouliouris, et al., mBio 10:e02693-18, 2019, https://doi.org/10.1128/mBio.02693-18). While the human and livestock populations were clearly distinct, with very limited evidence for transmission of E. coli or resistance elements to humans, the results also illustrate our limited ability to infer historical transmission events from even the best samples. The implications for the One Health framework, aiming to unify human and veterinary medicine, are discussed.


2019 ◽  
Vol 10 ◽  
Author(s):  
Iman Dandachi ◽  
Amer Chaddad ◽  
Jason Hanna ◽  
Jessika Matta ◽  
Ziad Daoud

2020 ◽  
Author(s):  
◽  
Manoja Kumar Das ◽  
Ashoka Mahapatra ◽  
Basanti Pathi ◽  
Rajashree Panigrahy ◽  
...  

BACKGROUND India has the largest burden of drug‑resistant organisms compared with other countries around the world, including multiresistant and extremely drug‑resistant tuberculosis and resistant Gram‑negative and Gram‑positive bacteria. Antibiotic resistant bacteria are found in all living hosts and in the environment and move between hosts and ecosystems. An intricate interplay of infections, exposure to antibiotics, and disinfectants at individual and community levels among humans, animals, birds, and fishes triggers evolution and spread of resistance. The <i>One Health</i> framework proposes addressing antibiotic resistance as a complex multidisciplinary problem. However, the evidence base in the Indian context is limited. OBJECTIVE This multisectoral, trans-species surveillance project aims to document the infection and resistance patterns of 7 resistant-priority bacteria and the risk factors for resistance following the One Health framework and geospatial epidemiology. METHODS This hospital- and community-based surveillance adopts a cross-sectional design with mixed methodology (quantitative, qualitative, and spatial) data collection. This study is being conducted at 6 microbiology laboratories and communities in Khurda district, Odisha, India. The laboratory surveillance collects data on bacteria isolates from different hosts and their resistance patterns. The hosts for infection surveillance include humans, animals (livestock, food chain, and pet animals), birds (poultry), and freshwater fishes (not crustaceans). For eligible patients, animals, birds and fishes, detailed data from their households or farms on health care seeking (for animals, birds and fishes, the illness, and care seeking of the caretakers), antibiotic use, disinfection practices, and neighborhood exposure to infection risks will be collected. Antibiotic prescription and use patterns at hospitals and clinics, and therapeutic and nontherapeutic antibiotic and disinfectant use in farms will also be collected. Interviews with key informants from animal breeding, agriculture, and food processing will explore the perceptions, attitudes, and practices related to antibiotic use. The data analysis will follow quantitative (descriptive and analytical), qualitative, and geospatial epidemiology principles. RESULTS The study was funded in May 2019 and approved by Institute Ethics Committees in March 2019. The data collection started in September 2019 and shall continue till March 2021. As of June 2020, data for 56 humans, 30 animals and birds, and fishes from 10 ponds have been collected. Data analysis is yet to be done. CONCLUSIONS This study will inform about the bacterial infection and resistance epidemiology among different hosts, the risk factors for infection, and resistance transmission. In addition, it will identify the potential triggers and levers for further exploration and action. INTERNATIONAL REGISTERED REPORT DERR1-10.2196/23241


Database ◽  
2019 ◽  
Vol 2019 ◽  
Author(s):  
Enyu Dai ◽  
Hao Zhang ◽  
Xu Zhou ◽  
Qian Song ◽  
Di Li ◽  
...  

Abstract The emergence and spread of drug-resistant Mycobacterium tuberculosis is of global concern. To improve the understanding of drug resistance in Mycobacteria, numerous studies have been performed to discover diagnostic markers and genetic determinants associated with resistance to anti-tuberculosis drug. However, the related information is scattered in a massive body of literature, which is inconvenient for researchers to investigate the molecular mechanism of drug resistance. Therefore, we manually collected 1707 curated associations between 73 compounds and 132 molecules (including coding genes and non-coding RNAs) in 6 mycobacterial species from 465 studies. The experimental details of molecular epidemiology and mechanism exploration research were also summarized and recorded in our work. In addition, multidrug resistance and extensively drug resistance molecules were also extracted to interpret the molecular mechanisms that are responsible for cross resistance among anti-tuberculosis drugs. Finally, we constructed an omnibus repository named MycoResistance, a user friendly interface to conveniently browse, search and download all related entries. We hope that this elaborate database will serve as a beneficial resource for mechanism explanations, precise diagnosis and effective treatment of drug-resistant mycobacterial strains.


10.2196/23241 ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. e23241
Author(s):  
◽  
Manoja Kumar Das ◽  
Ashoka Mahapatra ◽  
Basanti Pathi ◽  
Rajashree Panigrahy ◽  
...  

Background India has the largest burden of drug‑resistant organisms compared with other countries around the world, including multiresistant and extremely drug‑resistant tuberculosis and resistant Gram‑negative and Gram‑positive bacteria. Antibiotic resistant bacteria are found in all living hosts and in the environment and move between hosts and ecosystems. An intricate interplay of infections, exposure to antibiotics, and disinfectants at individual and community levels among humans, animals, birds, and fishes triggers evolution and spread of resistance. The One Health framework proposes addressing antibiotic resistance as a complex multidisciplinary problem. However, the evidence base in the Indian context is limited. Objective This multisectoral, trans-species surveillance project aims to document the infection and resistance patterns of 7 resistant-priority bacteria and the risk factors for resistance following the One Health framework and geospatial epidemiology. Methods This hospital- and community-based surveillance adopts a cross-sectional design with mixed methodology (quantitative, qualitative, and spatial) data collection. This study is being conducted at 6 microbiology laboratories and communities in Khurda district, Odisha, India. The laboratory surveillance collects data on bacteria isolates from different hosts and their resistance patterns. The hosts for infection surveillance include humans, animals (livestock, food chain, and pet animals), birds (poultry), and freshwater fishes (not crustaceans). For eligible patients, animals, birds and fishes, detailed data from their households or farms on health care seeking (for animals, birds and fishes, the illness, and care seeking of the caretakers), antibiotic use, disinfection practices, and neighborhood exposure to infection risks will be collected. Antibiotic prescription and use patterns at hospitals and clinics, and therapeutic and nontherapeutic antibiotic and disinfectant use in farms will also be collected. Interviews with key informants from animal breeding, agriculture, and food processing will explore the perceptions, attitudes, and practices related to antibiotic use. The data analysis will follow quantitative (descriptive and analytical), qualitative, and geospatial epidemiology principles. Results The study was funded in May 2019 and approved by Institute Ethics Committees in March 2019. The data collection started in September 2019 and shall continue till March 2021. As of June 2020, data for 56 humans, 30 animals and birds, and fishes from 10 ponds have been collected. Data analysis is yet to be done. Conclusions This study will inform about the bacterial infection and resistance epidemiology among different hosts, the risk factors for infection, and resistance transmission. In addition, it will identify the potential triggers and levers for further exploration and action. International Registered Report Identifier (IRRID) DERR1-10.2196/23241


2019 ◽  
Vol 1 (1) ◽  
Author(s):  
Bugwesa Z. Katale ◽  
Erasto V. Mbugi ◽  
Julius D. Keyyu ◽  
Robert D. Fyumagwa ◽  
Mark M. Rweyemamu ◽  
...  

Abstract Background One Health (OH) is an integrated approach, formed inclusive of using multiple disciplines to attain optimal health for humans, animals, and the environment. The increasing proximity between humans, livestock, and wildlife, and its role in the transmission dynamics of mycobacterial infections, necessitates an OH approach in the surveillance of zoonotic diseases. The challenge remains as humans, livestock, and wildlife share resources and interact at various interfaces. Therefore, this review explores the potential of the OH approach to understand the impact of mycobacterial infections in Tanzania in terms of lessons learnt and future perspectives. Materials and methods Available literature on OH and mycobacterial infections in Tanzania was searched in PubMed, Google Scholar, and Web of Science. Articles on mycobacterial infections in Tanzania, published between 1997 to 2017, were retrieved to explore the information on OH and mycobacterial infections. Main body The studies conducted in Tanzania had have reported a wide diversity of mycobacterial species in humans and animals, which necessitates an OH approach in surveillance of diseases for better control of infectious agents and to safeguard the health of humans and animals. The close proximity between humans and animals increases the chances of inter-specific transmission of infectious pathogens, including drug-resistant mycobacteria. In an era where HIV co-infection is also the case, opportunistic infection by environmental non-tuberculous mycobacteria (NTM), commonly known as mycobacteria other than tuberculosis (MOTT) may further exacerbate the impact of drug resistance. NTM from various sources have greatest potential for diverse strains among which are resistant strains due to continued evolutional changes. Conclusion A collaborative interdisciplinary approach among professionals could help in solving the threats posed by mycobacterial infections to public health, particularly by the spread of drug-resistant strains.


2021 ◽  
Vol 9 ◽  
Author(s):  
Gemechu Chala ◽  
Tadesse Eguale ◽  
Fufa Abunna ◽  
Daniel Asrat ◽  
Andrew Stringer

Campylobacter is the most common cause of bacterial infectious diarrhea and acute gastroenteritis globally, and is recognized as a significant zoonotic pathogen. Antimicrobial resistance amongst Campylobacter isolates is a significant global concern. A cross-sectional study was conducted to identify and characterize Campylobacter species in humans, animals and water sources in livestock owning households of peri-urban Addis Ababa, Ethiopia; and to characterize antimicrobial resistance. A total of 519 fecal samples from humans (n = 99), livestock (n = 179), poultry (n = 69), and water (n = 172) were collected. Samples were cultured for viable Campylobacter spp. and multiplex PCR utilized for the identification and confirmation. Antimicrobial susceptibility of the isolates was assessed using the Kirby-Bauer disc diffusion method. Campylobacter spp. was detected in 67/519 (13.0%) of the total tested samples, and the household level prevalence of Campylobacter was 42.4%. The prevalence of Campylobacter spp. was: humans (10.1%), cattle (18.5%), poultry (13.0%), sheep (13.3%), goats (7.1%), and water (10.5%). Campylobacter jejuni and C. fetus were the most frequently isolated species, followed by C. coli. The majority of isolates obtained from human samples had co-occurrence with isolates from cattle, poultry or water samples from the same household. The use of stored water, the practice of indoor and outdoor manure collecting, and animal species Campylobacter positivity were significantly associated with greater odds of human Campylobacter spp. positivity. All Campylobacter isolates from humans, poultry, sheep, goats and water, and 96.0% of isolates from cattle were resistant to at least one or more of the tested antimicrobials, with 95.5% of isolates resistant to three or more classes of antimicrobials. A One Health approach is recommended to further investigate Campylobacter species infections, and other zoonotic infectious diseases, in the livestock owning populations in Ethiopia, where there is close interaction between humans, animals and the environment.


Sign in / Sign up

Export Citation Format

Share Document