scholarly journals 1420. A One Health Approach Examining the Potential Linkage between Agricultural Livestock and Human Antibiotic Resistance at the Watershed Level

2020 ◽  
Vol 7 (Supplement_1) ◽  
pp. S716-S717
Author(s):  
Linsey M Donner ◽  
Xu Li ◽  
Daniel D Snow ◽  
Jodi L Sangster ◽  
Zachery R Staley ◽  
...  

Abstract Background Antibiotic resistance is a significant public health threat and widespread use of antibiotics in agriculture is increasing the concern about agricultural contributions to the dissemination of antibiotic resistant bacteria. Of concern is the level of exposure to antibiotics and antibiotic-resistant bacteria in the watershed. Consequently, adopting a One Health approach to measure antibiotic levels and identify antibiotic resistance gene (ARG) transfer at the human, animal and environmental interfaces is essential to better understand how antibiotic resistance is spread. Methods In this project, antibiotic levels were measured using passive organic chemical integrative samplers (POCIS) for 30-day periods from August – November 2018 from Elkhorn River and Shell Creek watersheds in Nebraska (Figure 1). In addition, whole genome sequences of bacterial isolates cultured from the watersheds were assessed to identify ARGs present on mobile genetic elements (MGE) that had >95% similarity to mobile ARG present in isolates recorded in the NCBI GenBank database was identified using ResFinder. Figure 1. Sampling locations within the two watersheds. Results The study demonstrated significant antibiotic levels present throughout the watershed, with five of them associated with human usage (Table 1). In addition, seasonally based drug-resistant bacterial species was associated with specific antibiotic levels in the watershed (Figure 2). Mobile ARGs were detected in 87.5% of isolates collected from the Elkhorn River and 80.0% within Shell Creek (Figure 3). Table 1. Pharmaceutical levels in the watershed Figure 2. Antibiotic levels and drug-resistant bacteria in the watershed Figure 3. Antibiotic resistance observed from each isolate at every sampling date and site. A colored bar denotes that resistance to that antibiotic was observed. Conclusion These results present evidence of transfer of highly mobile ARGs between environment, clinical, and animal-associated bacteria and highlight the need for a One Health perspective in assessing the spread of antibiotic resistance. The presence of significant levels of antibiotics persisting in this agricultural watershed points out the need for ongoing monitoring of compliance with the Food and Drug Administration (FDA) recommendation of veterinarian oversight of the use of antibiotics in the use of veterinary feed directive applications. Disclosures All Authors: No reported disclosures

2020 ◽  
Author(s):  
Jawad Ali ◽  
Malik Owais Ullah Awan ◽  
Gulcin Akca ◽  
Iftikhar Zeb ◽  
Bilal AZ Amin ◽  
...  

AbstractAntibiotics discovery was a significant breakthrough in the field of therapeutic medicines, but the over (mis)use of such antibiotics (n parallel) caused the increasing number of resistant bacterial species at an ever-higher rate. This study was thus devised to assess the multi-drug resistant bacteria present in sanitation-related facilities in human workplaces. In this regard, samples were collected from different gender, location, and source-based facilities, and subsequent antibiotic sensitivity testing was performed on isolated bacterial strains. Four classes of the most commonly used antibiotics i.e., β-lactam, Aminoglycosides, Macrolides, and Sulphonamides, were evaluated against the isolated bacteria.The antibiotic resistance profile of different (70) bacterial strains showed that the antibiotic resistance-based clusters also followed the grouping based on their isolation sources, mainly the gender. Twenty-three bacterial strains were further selected for their 16s rRNA gene based molecular identification and for phylogenetic analysis to evaluate the taxonomic evolution of antibiotic resistant bacteria. Moreover, the bacterial resistance to Sulphonamides and beta lactam was observed to be the most and to Aminoglycosides and macrolides as the least. Plasmid curing was also performed for MDR bacterial strains, which significantly abolished the resistance potential of bacterial strains for different antibiotics. These curing results suggested that the antibiotic resistance determinants in these purified bacterial strains are present on respective plasmids. Altogether, the data suggested that the human workplaces are the hotspot for the prevalence of MDR bacteria and thus may serve the source of horizontal gene transfer and further transmission to other environments.


2020 ◽  
Vol 13 (2) ◽  
pp. 266-274 ◽  
Author(s):  
Sharmin Akter ◽  
Abdullah Al Momen Sabuj ◽  
Zobayda Farzana Haque ◽  
Md. Tanvir Rahman ◽  
Md. Abdul Kafi ◽  
...  

Background and Aim: Houseflies (Musca domestica) are synanthropic insects which serve as biological or mechanical vectors for spreading multidrug-resistant bacteria responsible for many infectious diseases. This study aimed to detect antibiotic-resistant bacteria from houseflies, and to examine their resistance genes. Materials and Methods: A total of 140 houseflies were captured using sterile nylon net from seven places of Mymensingh city, Bangladesh. Immediately after collection, flies were transferred to a sterile zipper bag and brought to microbiology laboratory within 1 h. Three bacterial species were isolated from houseflies, based on cultural and molecular tests. After that, the isolates were subjected to antimicrobial susceptibility testing against commonly used antibiotics, by the disk diffusion method. Finally, the detection of antibiotic resistance genes tetA, tetB, mcr-3, mecA, and mecC was performed by a polymerase chain reaction. Results: The most common isolates were Staphylococcus aureus (78.6%), Salmonella spp., (66.4%), and Escherichia coli (51.4%). These species of bacteria were recovered from 78.3% of isolates from the Mymensingh Medical College Hospital areas. Most of the isolates of the three bacterial species were resistant to erythromycin, tetracycline, penicillin and amoxicillin and were sensitive to ciprofloxacin, ceftriaxone, chloramphenicol, gentamicin, and azithromycin. Five antibiotic resistance genes of three bacteria were detected: tetA, tetB, mcr-3, and mecA were found in 37%, 20%, 20%, and 14% isolates, respectively, and no isolates were positive for mecC gene. Conclusion: S. aureus, Salmonella spp., and E. coli with genetically-mediated multiple antibiotic resistance are carried in houseflies in the Mymensingh region. Flies may, therefore, represent an important means of transmission of these antibiotic-resistant bacteria, with consequent risks to human and animal health.


2018 ◽  
Vol 216 (1) ◽  
pp. 10-19 ◽  
Author(s):  
James W. Keith ◽  
Eric G. Pamer

The emergence of antibiotic-resistant bacterial pathogens is an all-too-common consequence of antibiotic use. Although antibiotic resistance among virulent bacterial pathogens is a growing concern, the highest levels of antibiotic resistance occur among less pathogenic but more common bacteria that are prevalent in healthcare settings. Patient-to-patient transmission of these antibiotic-resistant bacteria is a perpetual concern in hospitals. Many of these resistant microbes, such as vancomycin-resistant Enterococcus faecium and carbapenem-resistant Klebsiella pneumoniae, emerge from the intestinal lumen and invade the bloodstream of vulnerable patients, causing disseminated infection. These infections are associated with preceding antibiotic administration, which changes the intestinal microbiota and compromises resistance to colonization by antibiotic-resistant bacteria. Recent and ongoing studies are increasingly defining commensal bacterial species and the inhibitory mechanisms they use to prevent infection. The use of next-generation probiotics derived from the intestinal microbiota represents an alternative approach to prevention of infection by enriching colonization with protective commensal species, thereby reducing the density of antibiotic-resistant bacteria and also reducing patient-to-patient transmission of infection in healthcare settings.


Author(s):  
Korakot Chansareewittaya ◽  
Sirikarnnapa Krajangcharoensakul

Objective: To determine the antibiotic susceptibility patterns (antibiogram profiles) of the bacterial agents usually involved in hospital-acquired infections found in 12 sub-district health-promoting hospitals (HPHs) in Chiang Rai, Thailand.Material and Methods: Swabs from 10 different sampling points in each sub-district HPH were aseptically collected. Standard microbiological methods were performed to define the bacterial species. Antibiotic susceptibility was determined by the disk diffusion method following the standard guidelines of the Clinical and Laboratory Standards Institute (2016).Results: The antibiogram profiles of the 153 isolated bacteria showed that 55.6% of the isolates were resistant to antibiotics. Single drug resistant, double drug resistant, and multi-drug resistant bacteria accounted for 18.3%, 18.3%, and 19.0%, respectively. The Pseudomonas aeruginosa isolate was susceptible to all tested antibiotics. MDR phenotypes were most common in coagulase-negative staphylococci (13.1%), followed by members of the family of Enterobacteriaceae (3.9%) and Staphylococcus aureus (0.7%).Conclusion: The MDR rates reported in this study are “worrying”. These results suggest that sub-district HPHs may become sources of HAIs caused by antibiotic-resistant bacteria which can be inevitably transmitted into the wider community. Antibiotic stewardship, antibiotic susceptibility surveillance and hygiene practices may be used to prevent and limit the spread of such bacteria from sub-district HPHs to the community.


Author(s):  
Javad Nezhadi ◽  
Sepehr Taghizadeh ◽  
Ehsaneh Khodadadi ◽  
Mehdi Yousefi ◽  
Khudaverdi Ganbarov ◽  
...  

Abstract: The dramatically increasing levels of antibiotic resistance are being seen worldwide, and is a significant threat to public health. Antibiotic and drug resistance is seen in various bacterial species. Antibiotic resistance is associated with increased morbidity and mortality and increased treatment costs. Antisense-relevant technologies include the utilization of oligonucleotide molecules to interfere with gene expression, as a new technique for the treatment of antibiotic-resistant bacteria has been proposed antisense agents or nucleic acids analogs with antibacterial properties, which are commonly very short and their size almost 10-20 bases and can be hinted to peptide nucleic acids (PNAs), phosphorodiamidate morpholino oligomers (PPMOs) and locked nucleic acids (LNAs). This review highlights that PNAs, PPMOs, and LNAs target the genes that cause destroy the gene and inhibit the growth of bacteria. These results open a new perspective for therapeutic intervention. In future studies, it is necessary to examine different aspects of antisense agents, for example, safety, toxicity, and pharmacokinetic properties of antisense agents to be employed in clinical treatment.


Antibiotics ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 575
Author(s):  
Emi Nishimura ◽  
Masateru Nishiyama ◽  
Kei Nukazawa ◽  
Yoshihiro Suzuki

Information on the actual existence of antibiotic-resistant bacteria in rivers where sewage, urban wastewater, and livestock wastewater do not load is essential to prevent the spread of antibiotic-resistant bacteria in water environments. This study compared the antibiotic resistance profile of Escherichia coli upstream and downstream of human habitation. The survey was conducted in the summer, winter, and spring seasons. Resistance to one or more antibiotics at upstream and downstream sites was on average 18% and 20%, respectively, and no significant difference was observed between the survey sites. The resistance rates at the upstream site (total of 98 isolated strains) to each antibiotic were cefazolin 17%, tetracycline 12%, and ampicillin 8%, in descending order. Conversely, for the downstream site (total of 89 isolated strains), the rates were ampicillin 16%, cefazolin 16%, and tetracycline 1% in descending order. The resistance rate of tetracycline in the downstream site was significantly lower than that of the upstream site. Furthermore, phylogenetic analysis revealed that many strains showed different resistance profiles even in the same cluster of the Pulsed-Field Gel Electrophoresis (PFGE) pattern. Moreover, the resistance profiles differed in the same cluster of the upstream and the downstream sites. In flowing from the upstream to the downstream site, it is plausible that E. coli transmitted or lacked the antibiotic resistance gene.


Sign in / Sign up

Export Citation Format

Share Document