scholarly journals Energy consumption of the wood size reduction processes with employment of a low-power machines with various cutting mechanisms

2022 ◽  
Vol 181 ◽  
pp. 630-639 ◽  
Author(s):  
Łukasz Warguła ◽  
Mateusz Kukla ◽  
Bartosz Wieczorek ◽  
Piotr Krawiec
2009 ◽  
Vol 18 (01) ◽  
pp. 181-198 ◽  
Author(s):  
XIAO XIN XIA ◽  
TENG TIOW TAY

Energy consumption is one of the most important design constraints for modern microprocessors, and designers have proposed many energy-saving techniques. Looking beyond the traditional hardware low-power designs, software optimization is becoming a significant strategy for the microprocessor to lower its energy consumption. This paper describes an intra-application identification and reconfiguration mechanism for microprocessor energy reduction. Our mechanism employs a statistical sampling method during training runs to identify code sections among application that have appropriate IPC (Instructions per Cycle) values and could make contributions to program runtime energy reduction, and then profiles them to dynamically scale the voltage and frequency of the microprocessor at appropriate points during execution. In our simulation, our approach achieves energy savings by an average of 39% with minor performance degradation, compared to a processor running at a fixed voltage and speed.


2021 ◽  
Author(s):  
Archana Bhat ◽  
Geetha V

Abstract IPv6 Routing Protocol for low power and lossy networks (RPL) is a standardized and default routing protocol for low power lossy networks. However, this is basically designed for sensor networks with scalar data and not optimised for the networks with multi-modal sensors. The data rate of each multi-modal sensor varies based on various applications. RPL suffers from packet drops and re-transmissions which results in packet loss and energy consumption in case of multi-modal data transmission. Hence, the routing strategy implemented in RPL needs better scheduling strategy at parent node for forwarding packets based on various parameters. In this paper, relevant Objective Functions for multi-modal sensor data communication is proposed based on various parameters identified and a weighted ranking based scheduling strategy is proposed for multi-modal data communication called R-RPL. The goal of proposed ranking based RPL (R-RPL) is to increase the throughput and reduce the loss in terms of energy and delay based on proposed scheduling strategy for parent selection. The performance of the proposed R-RPL is evaluated in the contiki based Cooja simulator and compared with RPL protocol. The analysis shows that the R-RPL performs better compared to RPL with respect to packet delivery ratio and energy consumption.


2021 ◽  
Vol 2089 (1) ◽  
pp. 012080
Author(s):  
M. Srinivas ◽  
K.V. Daya Sagar

Abstract Currently, energy consumption in the digital circuit is a key design parameter for emerging mobile products. The principal cause of the power dissipation during idle mode is leakage currents, which are rising dramatically. Sub-threshold leakage is increased by the scaling of threshold voltage when gate current leakage increases because oxide thickness is scaled. With rising demands for mobile devices, leakage energy consumption has received even greater attention. Since a mobile device spends most of its time in standby mode, leakage power savings need to prolong the battery life. That is why low power has become a significant factor in CMOS circuit design. The required design and simulation of an AND gate with the BSIM4 MOS parameter model at 27 0C, supply voltage of 0,70V with CMOS technology of 65nm are the validation of the suitability of the proposed circuit technology. AND simulation. The performance parameters for the two AND input gate are compared with the current MTCMOS and SCCMOS techniques, such as sub-threshold leakage power dissipations in active and standby modes, the dynamic dissipation, and propagation period. The proposed hybrid super cutoff complete stack technique compared to the current MTCMOS technology shows a reduction in sub-threshold dissipation power dissipation by 3. 50x and 1.15x in standby modes and active modes respectively. The hybrid surface-cutting technique also shows savings of 2,50 and 1,04 in power dissipation at the sub-threshold in standby modes and active modes compared with the existing SCCMOS Technique.


2007 ◽  
Vol 16 (05) ◽  
pp. 745-767
Author(s):  
SUMITKUMAR N. PAMNANI ◽  
DEEPAK N. AGARWAL ◽  
GANG QU ◽  
DONALD YEUNG

Performance-enhancement techniques improve CPU speed at the cost of other valuable system resources such as power and energy. Software prefetching is one such technique, tolerating memory latency for high performance. In this article, we quantitatively study this technique's impact on system performance and power/energy consumption. First, we demonstrate that software prefetching achieves an average of 36% performance improvement with 8% additional energy consumption and 69% higher power consumption on six memory-intensive benchmarks. Then we combine software prefetching with a (unrealistic) static voltage scaling technique to show that this performance gain can be converted to an average of 48% energy saving. This suggests that it is promising to build low power systems with techniques traditionally known for performance enhancement. We thus propose a practical online profiling based dynamic voltage scaling (DVS) algorithm. The algorithm monitors system's performance and adapts the voltage level accordingly to save energy while maintaining the observed system performance. Our proposed online profiling DVS algorithm achieves 38% energy saving without any significant performance loss.


2010 ◽  
Vol 19 (07) ◽  
pp. 1609-1619 ◽  
Author(s):  
SHENG ZHANG ◽  
ZHENG LI ◽  
MENGMENG LIU ◽  
XIAOKANG LIN

This paper presents a novel non-coherent receiving algorithm termed trigger receiving algorithm. In comparison with conventional coherent receiving method, the trigger receiving algorithm needs neither local template nor correlation operation, thus both circuit complexity and power consumption are drastically reduced. Based on the proposed algorithm, a fully integrated transceiver was implemented in a 0.18 μ m CMOS process. It occupies an area of 0.44 mm2 and achieves a maximum chip rate of 40 Mbps with 7 mW energy consumption provided by a 1.8 V power supply.


2013 ◽  
Vol 391 ◽  
pp. 501-504
Author(s):  
De Hai Chen ◽  
Wei Feng Chao

The component of the greenhouse wireless sensor network was introduced, as the same time, its working process was presented. The wireless measurement nodes were designed based on nRF9E5. The hardware and software of the actuator nodes were studied, and according to the wireless communication system characteristic designing the system of hardware and software. The system was also debugged and test run. To reduce energy consumption, low-power components and low-power wireless transmission model were utilized, and the node had two operating model: active model and standby model. The wireless measurement system is reliable and expansibility.


2012 ◽  
Vol 59 (3) ◽  
pp. 343-360 ◽  
Author(s):  
Andrzej Witkowski ◽  
Mirosław Majkut

The aim of this paper is to analyze various CO2 compression processes for postcombustion CO2 capture applications for 900 MW pulverized coal-fired power plant. Different thermodynamically feasible CO2 compression systems will be identified and their energy consumption quantified. A detailed thermodynamic analysis examines methods used to minimize the power penalty to the producer through integrated, low-power compression concepts. The goal of the present research is to reduce this penalty through an analysis of different compression concepts, and a possibility of capturing the heat of compression and converting it to useful energy for use elsewhere in the plant.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Meng Zhang ◽  
Xiaoxu Song ◽  
T. W. Deines ◽  
Z. J. Pei ◽  
Donghai Wang

Size reduction is the first step for manufacturing biofuels from woody biomass. It is usually performed using milling machines and the particle size is controlled by the size of the sieve installed on a milling machine. There are reported studies about the effects of sieve size on energy consumption in milling of woody biomass. These studies show that energy consumption increased dramatically as sieve size became smaller. However, in these studies, the sugar yield (proportional to biofuel yield) in hydrolysis of the milled woody biomass was not measured. The lack of comprehensive studies about the effects of sieve size on energy consumption in biomass milling and sugar yield in hydrolysis process makes it difficult to decide which sieve size should be selected in order to minimize the energy consumption in size reduction and maximize the sugar yield in hydrolysis. The purpose of this paper is to fill this gap in the literature. In this paper, knife milling of poplar wood was conducted using sieves of three sizes (1, 2, and 4 mm). Results show that, as sieve size increased, energy consumption in knife milling decreased and sugar yield in hydrolysis increased in the tested range of particle sizes.


Sign in / Sign up

Export Citation Format

Share Document