scholarly journals Structural stability of biofilms produced from silkworm cocoon fibers

Author(s):  
Souza Felício ◽  
Henrique Santana

Biofilms were obtained from cocoons of the silkworm, Bombyx mori, involving the removal of sericin, extraction and solubilization of fibroin fibers, dialysis of fibroin dispersions and preparation of biofilms by the casting process. Biofilm transparency was verified by UV-Vis spectroscopy and thermal stability by thermogravimetric/differential scanning calorimetry (TG/DSC). Soon after preparation, the solidification of the fibroin solution prepared from the cocoons and extracted by the Ajisawa method was monitored until the biofilm stabilized, using Attenuated Total Reflectance-Fourier Transform Infrared spectroscopy (ATR FT-IR) as a function of time. The results showed that there is a change in the conformation from the silk I structure (?-helix) to silk II (?-sheet). In order to improve the characterization of the biofilms obtained by the Ajisawa method and LiBr solubilization of fibroin fibers, Raman spectroscopy was used to verify stabilization of the different possible molecular conformations for the fibers in these materials, by comparison with the cocoon spectra and those of the solid (freeze-dried hydrogel) precipitated by dialysis for 72 h. By comparing the Raman spectra of the biofilms in terms of the intensities of the broadened band characteristic of amide I, it was possible to assess the conformational changes in both materials based on possible transitions between ?-sheet conformations and flexible ?-helix and ?-turn structures. The results showed a dispersion of these conformations in the biofilms generated and in the solid freeze-dried hydrogel spectrum, and the ?-sheet conformation was found to be predominant. The TG and DSC curves showed that the materials with higher ?-sheet content exhibited higher thermal resistance. Thus, the data obtained further elucidate the properties of these materials which are widely used in various processes.

2017 ◽  
Vol 68 (8) ◽  
pp. 1895-1902
Author(s):  
Ioana Cristina Tita ◽  
Eleonora Marian ◽  
Bogdan Tita ◽  
Claudia Crina Toma ◽  
Laura Vicas

Thermal analysis is one of the most frequently used instrumental techniques in the pharmaceutical research, for the thermal characterization of different materials from solids to semi-solids, which are of pharmaceutical relevance. In this paper, simultaneous thermogravimetry/derivative thermogravimetry (TG/DTG) and differential scanning calorimetry (DSC) were used for characterization of the thermal behaviour of candesartan cilexetil � active substance (C-AS) under dynamic nitrogen atmosphere and nonisothermal conditions, in comparison with pharmaceutical product containing the corresponding active substance. It was observed that the commercial samples showed a different thermal profile than the standard sample, caused by the presence of excipients in the pharmaceutical product and to possible interaction of these with the active substance. The Fourier transformed infrared spectroscopy (FT-IR) and X-ray powder diffraction (XRPD) were used as complementary techniques adequately implement and assist in interpretation of the thermal results. The main conclusion of this comparative study was that the TG/DTG and DSC curves, together with the FT-IR spectra, respectively X-ray difractograms constitute believe data for the discrimination between the pure substance and pharmaceutical forms.


Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1869
Author(s):  
A K M Mashud Alam ◽  
Donovan Jenks ◽  
George A. Kraus ◽  
Chunhui Xiang

Organophosphate (OP) compounds, a family of highly hazardous chemical compounds included in nerve agents and pesticides, have been linked to more than 250,000 annual deaths connected to various chronic diseases. However, a solid-state sensing system that is able to be integrated into a clothing system is rare in the literature. This study aims to develop a nanofiber-based solid-state polymeric material as a soft sensor to detect OP compounds present in the environment. Esters of polydiacetylene were synthesized and incorporated into a cellulose acetate nanocomposite fibrous assembly developed with an electrospinning technique, which was then hydrolyzed to generate more hydroxyl groups for OP binding. Scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FT-IR), Instron® tensile tester, contact angle analyzer, and UV–Vis spectroscopy were employed for characterizations. Upon hydrolysis, polydiacetylene esters in the cellulosic fiber matrix were found unaffected by hydrolysis treatment, which made the composites suitable for OP sensing. Furthermore, the nanofibrous (NF) composites exhibited tensile properties suitable to be used as a textile material. Finally, the NF composites exhibited colorimetric sensing of OP, which is visible to the naked eye. This research is a landmark study toward the development of OP sensing in a protective clothing system.


2021 ◽  
Vol 23 (1) ◽  
pp. 16
Author(s):  
Vienna Saraswaty ◽  
Rossy Choerun Nissa ◽  
Bonita Firdiana ◽  
Akbar Hanif Dawam Abdullah

THE PHYSICOCHEMICAL CHARACTERISTICS OF RECYCLED-PLASTIC PELLETS OBTAINED FROM DISPOSABLE FACE MASK WASTES. The government policy to wear a face mask during the COVID-19 pandemic has increased disposable face mask wastes. Thus, to reduce such wastes, it is necessary to evaluate the physicochemical characteristics of disposable face masks wastes before the recycling process and the recycled products. In this study, physicochemical characterization of the 3-ply disposable face masks and the recycled plastic pellets after disinfection using 0.5% v/v sodium hypochlorite were evaluated. A set of parameters including the characterization of surface morphology by a scanning electron microscope (SEM), functional groups properties by a fourier transform infra-red spectroscopy (FT-IR), thermal behavior by a differential scanning calorimetry (DSC), tensile strength and elongation at break were evaluated. The surface morphological of each layer 3-ply disposable face mask showed that the layers were composed of non-woven fibers. The FT-IR evaluation revealed that 3-ply disposable face mask was made from a polypropylene. At the same time, the DSC analysis found that the polypropylene was in the form of homopolymer. The SEM analysis showed that the recycled plastic pellets showed a rough and uneven surface. The FT-IR, tensile strength and elongation at break of the recycled plastic pellets showed similarity with a virgin PP type CP442XP and a recycled PP from secondary recycling PP (COPLAST COMPANY). In summary, recycling 3-ply disposable face mask wastes to become plastic pellets is recommended for handling disposable face mask wastes problem.


2014 ◽  
Vol 34 (7) ◽  
pp. 611-616 ◽  
Author(s):  
Shijie Cheng ◽  
Jun Xu ◽  
Yumin Wu

Abstract Oxidized starch-graft-poly(styrene-butyl acrylate) [OS-g-P(St-BA)] latex was synthesized by the graft copolymerization of OS with St and n-butyl acrylate (BA) via emulsion polymerization. The graft copolymers were characterized by Fourier transform infrared (FT-IR), transmission electronic microscopy (TEM), dynamic light scattering, thermogravimetry (TG), and differential scanning calorimetry (DSC). The effects of the amount of OS, monomers, and initiator on graft copolymerization were investigated. Under the optimal conditions, the percentage of graft (PG), grafting efficiency (GE), and ζ potential could reach 256.5%, 41.7%, and -30.1 mV, respectively. The results indicated that the OS grafted onto particles greatly enhanced the colloidal stability of latex. The thermal stability properties of OS-g-P(St-BA) were also improved by the addition of OS. The OS-g-P(St-BA) latex may be used to partly replace the conventional synthetic latex for paper coating.


Pharmaceutics ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 417 ◽  
Author(s):  
Emese Sipos ◽  
Nóra Kósa ◽  
Adrienn Kazsoki ◽  
Zoltán-István Szabó ◽  
Romána Zelkó

Aceclofenac-loaded poly(vinyl-pyrrolidone)-based nanofiber formulations were prepared by electrospinning to obtain drug-loaded orally disintegrating webs to enhance the solubility and dissolution rate of the poorly soluble anti-inflammatory active that belongs to the BCS Class-II. Triethanolamine-containing ternary composite of aceclofenac-poly(vinyl-pyrrolidone) nanofibers were formulated to exert the synergistic effect on the drug-dissolution improvement. The composition and the electrospinning parameters were changed to select the fibrous sample of optimum fiber characteristics. To determine the morphology of the nanofibers, scanning electron microscopy was used. Fourier transform infrared spectroscopy (FT-IR), and differential scanning calorimetry (DSC) were applied for the solid-state characterization of the samples, while the drug release profile was followed by the in vitro dissolution test. The nanofibrous formulations had diameters in the range of few hundred nanometers. FT-IR spectra and DSC thermograms indicated the amorphization of aceclofenac, which resulted in a rapid release of the active substance. The characteristics of the selected ternary fiber composition (10 mg/g aceclofenac, 1% w/w triethanolamine, 15% w/w PVPK90) were found to be suitable for obtaining orally dissolving webs of fast dissolution and potential oral absorption.


2001 ◽  
Vol 7 (S2) ◽  
pp. 152-153
Author(s):  
H. Gotts

FTIR and Raman microanalysis may be used as a powerful combination to determine the identity, and hence infer the source, of contaminant particles which diminish yields of semiconductor components and devices. The complimentarity of these techniques arises from the underlying spectroscopic selection rules.Vibrational spectroscopic techniques are commonly used to characterize the molecular structure of bulk organic materials. These bulk materials typically represent purified fractions of components which may be further investigated with various classical instrumental techniques such as Differential Scanning Calorimetry (DSC), Nuclear Magnetic Resonance (NMR) spectroscopy, UV-Vis spectroscopy. However, these classical technique may have limited value for the interrogation of small impure particles or materials of limited quantity(ng.).Elemental techniques such as Scanning Electron Microscopy coupled to Energy Dispersive Spectroscopy are enhanced by the specificity of FTIR Microprobe Spectroscopy and Raman Microprobe Spectroscopy which are now used in process laboratories to characterize and identify particulate and thin film residues with the intent of device yield enhancement.


Polymers ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1498 ◽  
Author(s):  
Abdul Hafeez ◽  
Zareen Akhter ◽  
John F. Gallagher ◽  
Nawazish Ali Khan ◽  
Asghari Gul ◽  
...  

Bis-aldehyde monomers 4-(4′-formyl-phenoxy)benzaldehyde (3a), 3-methoxy-4-(4′-formyl-phenoxy)benzaldehyde (3b), and 3-ethoxy-4-(4′-formyl-phenoxy)benzaldehyde (3c) were synthesized by etherification of 4-fluorobenzaldehyde (1) with 4-hydroxybenzaldehyde (2a), 3-methoxy-4-hydroxybenzaldehyde (2b), and 3-ethoxy-4-hydroxybenzaldehyde (2c), respectively. Each monomer was polymerized with p-phenylenediamine and 4,4′-diaminodiphenyl ether to yield six poly(azomethine)s. Single crystal X-ray diffraction structures of 3b and 3c were determined. The structural characterization of the monomers and poly(azomethine)s was performed by FT-IR and NMR spectroscopic techniques and elemental analysis. Physicochemical properties of polymers were investigated by powder X-ray diffraction, thermogravimetric analysis (TGA), viscometry, UV–vis, spectroscopy and photoluminescence. These polymers were subjected to electrical conductivity measurements by the four-probe method, and their conductivities were found to be in the range 4.0 × 10−5 to 6.4 × 10−5 Scm−1, which was significantly higher than the values reported so far.


2007 ◽  
Vol 124-126 ◽  
pp. 287-290 ◽  
Author(s):  
Fei Liu ◽  
Yong Jun He ◽  
Jeung Soo Huh

The nano-CeO2 was synthesized by two-step solid-phase reaction. The image of TEM showed that nano-CeO2 with an average size of about 70 nm. The series of polyaniline/nano-CeO2 composites with different PANi: CeO2 ratios were prepared by in-situ polymerization in the presence of hydrochloric acid (HCl) as dopant by adding nano-CeO2 into the polymerization reaction mixture of aniline. The composites obtained were characterized by FT-IR and UV-vis spectroscopy analysis. The FT-IR spectra of nanocomposites indicate different blue-shifts, attributed to C–N stretching mode for benzenoid unit. The UV-vis spectra of nanocomposites display einstein-shifts compared with PANi at 620nm. The conductivity properties of the composites are also changed compare to the pure PANi. These results suggest that the interactions between the polymer matrix and nanoparticles take place in polyaniline/nano- CeO2 composites.


2021 ◽  
Author(s):  
Govindaraju K ◽  
K. Vijai Anand ◽  
S. Muthamilselvan ◽  
M. Kannan ◽  
M. Elanchezhiyan

Abstract In this study, a simple environmental benign approach have been adopted for the preparation of highly luminescent (blue emitting) water soluble carbon nano-dots using Pongammia pinnata (Pp) leaves via hydrothermal technique. The prepared Pp-carbon nano- dots were characterized using UV-vis spectroscopy, fluorescence spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, transmission electron microscopy (TEM) and dynamic light scattering (DLS) measurements. The Pp-carbon nano-dots are spherical in shape with an average size of 32 nm.


Sign in / Sign up

Export Citation Format

Share Document