Physicochemical regeneration of industrial spent activated carbons using a green activating agent and their adsorption for methyl orange

2021 ◽  
pp. 101696
Author(s):  
Emmanuel Oluwaseyi Fagbohun ◽  
Qianyu Wang ◽  
Lucas Spessato ◽  
Yuhua Zheng ◽  
Wenli Li ◽  
...  
2019 ◽  
Vol 5 (3) ◽  
pp. 43 ◽  
Author(s):  
Aloysius Akaangee Pam

In this present work, a novel method for synthesis of palm kernel shell activated carbon was established using DES (choline chloride/urea)/H3PO4 as the activating agent. The pore characterization, morphology, and adsorption properties of the activated carbons were investigated. The activated carbon samples made from the same feedstock at two pyrolysis temperatures (500 and 600 °C) were compared for their ability to adsorb Pb(II) in aqueous solution. The results demonstrated that the production of the activated carbon and adsorptive properties were significantly influenced by the pyrolysis temperature and the ratio of precursor to activating agent. DES/H3PO4 activated carbon (having surface area 1413 m2/g and total pore volume 0.6181 cm3/g) demonstrated good Pb(II) removal. Although all the tested activated carbon samples adsorbed Pb(II) from aqueous solution, they demonstrated different adsorption capabilities according to their various properties. The pyrolysis temperature, however, showed little influence on the activated carbon adsorption of Pb(II) when compared to the impregnation ratio. Their good desorption performance perhaps resulted from the porous structure.


2017 ◽  
Vol 19 (2) ◽  
pp. 38-43 ◽  
Author(s):  
Katarzyna Lewicka

Abstract Research treats about producing activated carbons for CO2 capture from hazelnut shells (HN), walnut shells (WN) and peanut shells (PN). Saturated solution of KOH was used as an activating agent in ratio 1:1. Samples were carbonized in the furnace in the range of temperatures 600°C–900°C. Properties of carbons were tested by N2 adsorption method, using BET equation, DFT method and volumetric CO2 adsorption method. With the increase of carbonization temperature specific surface area of studied samples increased. The largest surface area was calculated for samples carbonized at 900°C and the highest values of CO2 adsorption had samples: PN900 at 0°C (5.5 mmol/g) and WN900 at 25°C (4.34 mmol/g). All of the samples had a well-developed microporous structure.


2020 ◽  
Vol 1010 ◽  
pp. 453-458
Author(s):  
Mohd Zazmiezi Mohd Alias ◽  
Rozidaini Mohd Ghazi ◽  
Nik Raihan Nik Yusoff ◽  
Mohd Hafiz Jamaludin

This study investigated the effect of activating agent on activated carbon preparation and potential chemical oxygen demand (COD) reduction using activated carbons (AC) prepared. Zinc chloride, phosphoric acid and potassium hydroxide were utilized in impregnation of bamboo and rice husk. Result of SEM-EDX, FTIR as well as COD reduction were compared and discussed. The SEM displayed highest porosity in AC using KOH activation. FTIR analysis displayed obvious difference for each activation. AC using KOH activation obtained highest COD reduction.


2016 ◽  
Vol 35 (6) ◽  
pp. 535-541 ◽  
Author(s):  
Hongying Xia ◽  
Jian Wu ◽  
Chandrasekar Srinivasakannan ◽  
Jinhui Peng ◽  
Libo Zhang

AbstractThe present work attempts to convert bamboo into a high surface area activated carbon via microwave heating. Different chemical activating agents such as KOH, NaOH, K2CO3 and Na2CO3 were utilized to identify a most suitable activating agent. Among the activating agents tested KOH was found to generate carbon with the highest porosity and surface area. The effect of KOH/C ratio on the porous nature of the activated carbon has been assessed. An optimal KOH/C ratio of 4 was identified, beyond which the surface area as well as the pore volume were found to decrease. At the optimized KOH/C ratio the surface area and the pore volume were estimated to be 3,441 m2/g and 2.093 ml/g, respectively, with the significant proportion of which being microporous (62.3%). Activated carbon prepared under the optimum conditions was further characterized using Fourier transform infrared spectroscopy (FTIR) and scanning electron microscope (SEM). Activated carbons with so high surface area and pore volume are very rarely reported, which could be owed to the nature of the precursor and the optimal conditions of mixture ratio adopted in the present work.


2019 ◽  
Vol 24 (6) ◽  
pp. 45
Author(s):  
Mayada M . Ali1 ◽  
Firas E. Fatthee2 ◽  
Ahmed AbdulkarimThunoon3

In the present study, activated carbons were prepared from Punicagranatum .sp, using potassium hydroxide as activating agent. Punicagranatum .sp activated carbon(PGAC) was characterization using methylene blue number, iodine number and some physical properties such as humidity, ash content and density. The perfect measurement for this study was the proportion of (1:2.5)(wood : KOH) to give 560mg for iodine number and 67mg for methylene blue number which are good result.   http://dx.doi.org/10.25130/tjps.24.2019.107


2019 ◽  
Vol 70 (2) ◽  
pp. 410-416 ◽  
Author(s):  
Tagne Tiegam Rufis Fregue ◽  
Ioana Ionel ◽  
Anagho Solomon Gabche ◽  
Alin-Cristian Mihaiuti

Avocado seeds based activated carbon was prepared using chemical activation method which consisted of potassium hydroxide treatment. The main factors influencing the preparation of activated carbons at the calcination temperature, the concentration of the activating agent and the duration of calcination were investigated. One used as a mathematical model the response surface methodology to correlate the response. The significant factors identified by the analysis of variance (ANOVA) through the t-test, the Pareto diagram and the diagrams of surfaces. The optimum avocado seeds based activated carbon was obtained by using calcination temperature of 450 oC, concentration of activating agent of 0.3 mol/L and time of calcination of 3.0 h, which resulted to an avocado seed based activated carbon iodine number remove of 1142.1 mg/g and yield of 75.09 %, by mass. The best activated carbon obtained under the previous conditions and the raw biomass was characterized by Fourier transform infrared and Scanning Electronic Microscope.


2020 ◽  
Vol 15 (1) ◽  
pp. 144-149
Author(s):  
Abhimanyu Jha ◽  
Aabhash K. Mallick ◽  
Rajeshwar M. Shrestha ◽  
Rinita Rajbhandari Joshi

In this work, nanoporous activated carbons from Peach Stone powder was achieved using phosphoric acid as an activating agent and carbonization has been conducted at temperatures ranging from 400oC to 700oC using Nitrogen as inert gas in a tubular furnace, to understand the effect of the adsorption capacity with variation in temperature. Evaluation of microporosity of each of these specimens was performed by Iodine Number technique, of which the results showed a maximum amount of micropores in the carbon at the carbonization temperature of 500oC. The morphology of the carbon samples at two extreme temperatures of 400oC and 700oC was studied using FE-SEM images, which demonstrated large amount of nanoporous in the carbon surfaces at the higher temperature. Raman Spectroscopy outcomes delineate the similar amorphous nature of the carbonaceous specimen at these temperatures with both G band and D band. These results indicate a potential to develop a good adsorbent material applicable for water purification.


2012 ◽  
Vol 9 (2) ◽  
pp. 780-785 ◽  
Author(s):  
J. C. Moreno-Piraján ◽  
L. Giraldo

Activated carbons (ACs) were prepared by pyrolysis of seeds mango in presence of sodium and potassium hydroxide (chemical activities). Seeds mango from Colombian Mango cultives were impregnated with aqueous solutions of NaOH and KOH following a variant of the incipient wetness method. Different concentrations were used to produce impregnation ratios of 3:1 (weight terms). Activation was carried out under argon flow by heating to 823 K with 1 h soaking time. The porous texture of the obtained ACs was characterized by physical adsorptions of N2at 77 K and CO2at 273 K. The impregnation ration and hydroxide type had a strong influence on the pore structure of these ACs, which could be easily controlled by simply varying the proportion of the hydroxides used in the activation. Thus, the development of porosity for precursors with low structural order (high reactivity) is better with NaOH than KOH, whereas the opposite is observed for the highly ordered ones. Variable adsorption capacities and porosity distributions can be achieved depending on the activating agent selected. In general, KOH produces activated carbons with narrower micropore distributions than those prepared by NaOH.


1995 ◽  
Vol 12 (3) ◽  
pp. 247-258 ◽  
Author(s):  
C. Nguyen ◽  
A. Ahmadpour ◽  
D.D. Do

Activated carbon was prepared from nut shells using a conventional two-stage method: carbonization followed by activation. Activation with steam or carbon dioxide as activating agent produced a range of chars of different burn-off. These were characterized for their total and micropore surface areas, and benzene adsorption capacity. Benzene adsorption measurement provided an insight into the effect of porosity development on the adsorptive properties of the adsorbent. It was found that activated carbon products from nut shells were comparable, in terms of adsorption characteristics, with activated carbons from other lignocellulosic precursors. The evolution of porosity of the resulting carbons shows that carbon dioxide is the preferable agent for the production of activated carbon with a narrow micropore size distribution.


RSC Advances ◽  
2015 ◽  
Vol 5 (79) ◽  
pp. 64704-64710 ◽  
Author(s):  
Guofu Ma ◽  
Dongyang Guo ◽  
Kanjun Sun ◽  
Hui Peng ◽  
Qian Yang ◽  
...  

Cotton-based porous activated carbons (CACs) are prepared through a simple chemical activation method using cotton fiber as carbon source and ZnCl2 as activating agent.


Sign in / Sign up

Export Citation Format

Share Document