Unveiling ice friction and aerodynamic drag at the initial stage of sliding on ice: Faster sliding in winter sports

2021 ◽  
pp. 106967
Author(s):  
Martins Irbe ◽  
Karlis Agris Gross ◽  
Janis Viba ◽  
Marina Cerpinska
Author(s):  
Len Brownlie

The Winter Olympics are a highly competitive sporting environment where subtle improvements in performance can impact the finishing order in many events. Aerodynamic drag is known to be a significant resistive force to human movement in high-speed sports, such as alpine skiing, speed skating and bobsleigh. Aerodynamic drag also represents an important determinant of performance in sports such as ice hockey, snowboard cross and cross-country skiing. From 2000 to 2018, a series of wind tunnel–based research projects were conducted to provide aerodynamically optimized apparel, equipment and wind tunnel simulation training to elite Canadian and American winter sports athletes involved in bobsleigh, skeleton, luge, ice hockey, speed skating, cross-country, alpine and para-alpine skiing, biathlon, ski-cross and snowboard cross. This article reviews the role of aerodynamic drag in winter sports, considers fundamental principles of air flow around bluff bodies and methods of drag reduction in ice and snow sports, while providing experimental results from an extensive database of wind tunnel investigations. Deficits in the literature suggest productive areas for future research to improve athletic performance in these sports.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Matthias Scherge ◽  
Roman Böttcher ◽  
Mike Richter ◽  
Udo Gurgel

Using a high-speed tribometer, coefficients of friction for bobsled runners were measured over a wide range of loads and speeds. Between 2.8 m/s and 28 m/s (equal to 10 km/h and 100 km/h), the measured coefficients of friction showed a linear decrease with increasing speed. The experiments revealed ultra-low friction coefficients of less than 0.01 after exceeding a sliding speed of about 20 m/s. At maximum speed of 28 m/s, the average coefficient of friction was 0.007. The experiments help to bridge the gap between numerous low-speed friction tests by other groups and tests performed with bobsleds on real tracks. It was shown that the friction data obtained by other groups and our measurements can be approximated by a single master curve. This curve exhibits the largest decrease in friction up to a sliding speed of about 3 m/s. The further increase in speed generates only a small decrease in friction. In addition, friction decreases with increasing load. The decrease stops when ice wear becomes effective. The load point of constant friction depends on the cross-sectional radius of the runner. The larger the radius is, the higher the load is, before the ice shows signs of fracture. It turned out that besides aerodynamic drag (not considered in this work), ice friction is one of the main speed-limiting factors. In terms of runner geometry, a flat contact of runner and ice ensures the lowest friction. The rocker radius of the runner is of greater importance for a low coefficient of friction than the cross-sectional radius.


2020 ◽  
pp. 62-69
Author(s):  
Сергей Николаевич Копылов ◽  
Леонид Тимофеевич Танклевский ◽  
Александр Алексеевич Таранцев ◽  
Игорь Александрович Бабиков ◽  
Александр Валерьевич Аракчеев

Рассмотрены вопросы, связанные с применением спринклерных автоматических установок водяного пожаротушения стеллажей. Проанализированы соответствующие нормативные документы. Описаны варианты решения задач определения расхода воды из оросителя, координат места его установки, а также углов распыла огнетушащего вещества и наклона оси оросителя. Приведены примеры расчета геометрических параметров спринклерных автоматических установок водяного пожаротушения стеллажей. Fires at objects whith high-rack storage of combustible materials are particularly dangerous because of the rapid spread of the flame vertically, the risk of collapse of the racks and the damaging effects of high temperature on structural elements of the building. The main method of extinguishing such fires at the initial stage is the use of automatic sprinkler fire extinguishing systems (AUP). The requirements for AUP parameters (types of detectors and sprinklers, their characteristics and distances) depending on the height of the room and storage are currently set out in two normative documents: the set of rules (SP 241.1311500.2015) and the organization standard (VNPB 40-16). Unlike the SP, where there is provided only the supply of a fire extinguishing substance (FES) - water vertically down with high-flow sprinklers of type SOBR (ESFR) and there are no requirements for the type of fire detectors, VNPB provides the use of different types of detectors (aspiration, smoke, heat), forced start-up of AUP sprinklers, which reduces the time of free fire development and the supply of FES by a flow shaper with the spray angle ≈ 600 at an angle  to the vertical both to the horizontal and lateral surfaces of the racks. This article discusses the issues of determining the parameters of automatic sprinkler systems for water fire extinguishing of racks. Variants of solving synthesis problems are given - the choice of the places for installing sprinklers depending on the height and width of the racks, their axis of inclination, and also the spray angle. To solve these problems, the computer program called struja.exe was created, a series of calculations on which showed a negligible effect of aerodynamic drag due to relatively small distances. Examples are given. Thus, the features of the sprinkler AUP for the protection of rooms with high-rack storage and the task of determining its geometric parameters are considered. In this case, forced activation of the sprinkler follows in order to avoid a delay in the start of extinguishing. In the future, it is also desirable to conduct additional field experiments with sprinkler water supply and also (if possible) evaluate the effect of ascending flows of combustion products on the water flow from the sprinkler.


Author(s):  
D.W. Susnitzky ◽  
S.R. Summerfelt ◽  
C.B. Carter

Solid-state reactions have traditionally been studied in the form of diffusion couples. This ‘bulk’ approach has been modified, for the specific case of the reaction between NiO and Al2O3, by growing NiAl2O4 (spinel) from electron-transparent Al2O3 TEM foils which had been exposed to NiO vapor at 1415°C. This latter ‘thin-film’ approach has been used to characterize the initial stage of spinel formation and to produce clean phase boundaries since further TEM preparation is not required after the reaction is completed. The present study demonstrates that chemical-vapor deposition (CVD) can be used to deposit NiO particles, with controlled size and spatial distributions, onto Al2O3 TEM specimens. Chemical reactions do not occur during the deposition process, since CVD is a relatively low-temperature technique, and thus the NiO-Al2O3 interface can be characterized. Moreover, a series of annealing treatments can be performed on the same sample which allows both Ni0-NiAl2O4 and NiAl2O4-Al2O3 interfaces to be characterized and which therefore makes this technique amenable to kinetics studies of thin-film reactions.


Author(s):  
H. Bethge

Besides the atomic surface structure, diverging in special cases with respect to the bulk structure, the real structure of a surface Is determined by the step structure. Using the decoration technique /1/ it is possible to image step structures having step heights down to a single lattice plane distance electron-microscopically. For a number of problems the knowledge of the monatomic step structures is important, because numerous problems of surface physics are directly connected with processes taking place at these steps, e.g. crystal growth or evaporation, sorption and nucleatlon as initial stage of overgrowth of thin films.To demonstrate the decoration technique by means of evaporation of heavy metals Fig. 1 from our former investigations shows the monatomic step structure of an evaporated NaCI crystal. of special Importance Is the detection of the movement of steps during the growth or evaporation of a crystal. From the velocity of a step fundamental quantities for the molecular processes can be determined, e.g. the mean free diffusion path of molecules.


Author(s):  
Xianghong Tong ◽  
Oliver Pohland ◽  
J. Murray Gibson

The nucleation and initial stage of Pd2Si crystals on Si(111) surface is studied in situ using an Ultra-High Vacuum (UHV) Transmission Electron Microscope (TEM). A modified JEOL 200CX TEM is used for the study. The Si(111) sample is prepared by chemical thinning and is cleaned inside the UHV chamber with base pressure of 1x10−9 τ. A Pd film of 20 Å thick is deposited on to the Si(111) sample in situ using a built-in mini evaporator. This room temperature deposited Pd film is thermally annealed subsequently to form Pd2Si crystals. Surface sensitive dark field imaging is used for the study to reveal the effect of surface and interface steps.The initial growth of the Pd2Si has three stages: nucleation, growth of the nuclei and coalescence of the nuclei. Our experiments shows that the nucleation of the Pd2Si crystal occurs randomly and almost instantaneously on the terraces upon thermal annealing or electron irradiation.


Author(s):  
C. Vannuffel ◽  
C. Schiller ◽  
J. P. Chevalier

Recently, interest has focused on the epitaxy of GaAs on Si as a promising material for electronic applications, potentially for integration of optoelectronic devices on silicon wafers. The essential problem concerns the 4% misfit between the two materials, and this must be accommodated by a network of interfacial dislocations with the lowest number of threading dislocations. It is thus important to understand the detailed mechanism of the formation of this network, in order to eventually reduce the dislocation density at the top of the layers.MOVPE growth is carried out on slightly misoriented, (3.5°) from (001) towards , Si substrates. Here we report on the effect of this misorientation on the interfacial defects, at a very early stage of growth. Only the first stage, of the well-known two step growth process, is thus considered. Previously, we showed that full substrate coverage occured for GaAs thicknesses of 5 nm in contrast to MBE growth, where substantially greater thicknesses are required.


2020 ◽  
Vol 21 (6) ◽  
pp. 610
Author(s):  
Xiaoliang Cheng ◽  
Chunyang Zhao ◽  
Hailong Wang ◽  
Yang Wang ◽  
Zhenlong Wang

Microwave cutting glass and ceramics based on thermal controlled fracture method has gained much attention recently for its advantages in lower energy-consumption and higher efficiency than conventional processing method. However, the irregular crack-propagation is problematic in this procedure, which hinders the industrial application of this advanced technology. In this study, the irregular crack-propagation is summarized as the unstable propagation in the initial stage, the deviated propagation in the middle stage, and the non-penetrating propagation in the end segment based on experimental work. Method for predicting the unstable propagation in the initial stage has been developed by combining analytical models with thermal-fracture simulation. Experimental results show good agreement with the prediction results, and the relative deviation between them can be <5% in cutting of some ceramics. The mechanism of deviated propagation and the non-penetrating propagation have been revealed by simulation and theoretical analysis. Since this study provides effective methods to predict unstable crack-propagation in the initial stage and understand the irregular propagation mechanism in the whole crack-propagation stage in microwave cutting ceramics, it is of great significance to the industrial application of thermal controlled fracture method for cutting ceramic materials using microwave.


Sign in / Sign up

Export Citation Format

Share Document