The cleanability of stainless steel as determined by X-ray photoelectron spectroscopy

2001 ◽  
Vol 172 (1-2) ◽  
pp. 135-143 ◽  
Author(s):  
R.D. Boyd ◽  
J. Verran ◽  
K.E. Hall ◽  
C. Underhill ◽  
S. Hibbert ◽  
...  
Langmuir ◽  
2012 ◽  
Vol 28 (47) ◽  
pp. 16306-16317 ◽  
Author(s):  
Yolanda S. Hedberg ◽  
Manuela S. Killian ◽  
Eva Blomberg ◽  
Sannakaisa Virtanen ◽  
Patrik Schmuki ◽  
...  

2020 ◽  
Vol 10 (18) ◽  
pp. 6275
Author(s):  
Heng-Jui Hsu ◽  
Chia-Yu Wu ◽  
Bai-Hung Huang ◽  
Chi-Hsun Tsai ◽  
Takashi Saito ◽  
...  

In this study, an electrochemical anodizing method was applied as surface modification of the 316L biomedical stainless steel (BSS). The surface properties, microstructural characteristics, and biocompatibility responses of the anodized 316L BSS specimens were elucidated through scanning electron microscopy, X-ray photoelectron spectroscopy, X-ray diffractometry, transmission electron microscopy, and in vitro cell culture assay. Analytical results revealed that the oxide layer of dichromium trioxide (Cr2O3) was formed on the modified 316L BSS specimens after the different anodization modifications. Moreover, a dual porous (micro/nanoporous) topography can also be discovered on the surface of the modified 316L BSS specimens. The microstructure of the anodized oxide layer was composed of amorphous austenite phase and nano-Cr2O3. Furthermore, in vitro cell culture assay also demonstrated that the osteoblast-like cells (MG-63) on the anodized 316L BSS specimens were completely adhered and covered as compared with the unmodified 316L BSS specimen. As a result, the anodized 316L BSS with a dual porous (micro/nanoporous) oxide layer has great potential to induce cell adhesion and promote bone formation.


2008 ◽  
Vol 2008 ◽  
pp. 1-5 ◽  
Author(s):  
E. Barrera-Calva ◽  
J. Méndez-Vivar ◽  
M. Ortega-López ◽  
L. Huerta-Arcos ◽  
J. Morales-Corona ◽  
...  

Silica-copper oxide (silica-CuO) composite thin films were prepared by a dipping sol-gel route using ethanolic solutions comprised TEOS and a copper-propionate complex. Sols with different TEOS/Cu-propionate (Si/Cu) molar ratios were prepared and applied on stainless steel substrates using dipping process. During the annealing process, copper-propionate complexes developed into particulate polycrystalline CuO dispersed in a partially crystallized silica matrix, as indicated by the X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analyses. The gel thermal analysis revealed that the prepared material might be stable up to400°C. The silica-CuO/stainless steel system was characterized as a selective absorber surface and its solar selectivity parameters, absorptance (α), and emittance (ε) were evaluated from UV-NIR reflectance data. The solar parameters of such a system were mostly affected by the thickness and phase composition of theSiO2-CuO film. Interestingly, the best solar parameters (α= 0.92 andε= 0.2) were associated to the thinnest films, which comprised a CuO-Cu2Omixture immersed in the silica matrix, as indicated by XPS.


Author(s):  
Wei Han ◽  
Fengzhou Fang

Abstract The study is to investigate the electropolishing characteristics of 316L stainless steel in a sulfuric acid-free electrolyte of phosphoric acid and glycerol and to explore the possibility of using this eco-friendly electrolyte instead of the widely used sulfuric acid-based electrolyte. The influences of process parameters on polishing effects and the corrosion resistance of electropolished samples are investigated. The experimental results show that the electropolishing temperature and acid concentration are directly related to the mass transport mechanism in the limiting current plateau region. The grain boundaries of workpiece were electrochemically dissolved faster than the grain themselves at the beginning of the electropolishing process because they are more reactive than grains. Moreover, the conventional sulfuric—phosphoric acid electrolyte was also used to electropolish the 316L stainless steel, and the electropolished surfaces were compared with the sulfuric acid-free electrolyte proposed in this study. When the sulfuric acid-free electrolyte was used to electropolish the 316L stainless steel, the X-ray photoelectron spectroscopy (XPS) analysis shows that atomic Cr/Fe ratio of 316L stainless steel was increased from 0.802 to 1.909 after electropolishing process in the sulfuric acid-free electrolyte of phosphoric acid and glycerol. The corrosion resistance of the electropolished 316L stainless steel is studied using electrochemical analysis, and the results are verified experimentally.


Coatings ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 329
Author(s):  
Faisal I. Alresheedi ◽  
James E. Krzanowski

This study examines the structure and properties of stainless steel coatings deposited to incorporate large concentrations of nitrogen along with varying amounts of titanium. Deposition was carried out using magnetron co-sputtering of stainless steel and titanium from separate targets in a mixed Ar/N2 gas atmosphere. Composition analysis by X-ray photoelectron spectroscopy showed that while films with up to 4 at.% Ti exhibited little change in nitrogen content (compared to films deposited without Ti) and remained sub-stoichiometric with respect to N content. Films with 7–8 at.% Ti had a higher N level and further increasing the Ti level to 11–12 at.% resulted in stoichiometric N levels. X-ray diffraction showed that the films all had a nominally FCC structure with no additional phases. However, the peak locations for the (111) and (200) reflections indicated a distorted lattice characteristic of the S-phase, with calculated c/a values ranging from 1.007 to 1.033. The Ti additions, along with the corresponding increase in N content, helped reduce the extent of lattice distortion. The film microstructure of the higher (11–12 at.%) Ti films also showed higher density, lower surface roughness, and a finer grain structure. As a result, these films had a higher hardness compared to the sub-stoichiometric films, with hardness levels in the range of 18–23 GPa, typical of transition metal nitrides coatings.


1993 ◽  
Vol 60 (4) ◽  
pp. 467-483 ◽  
Author(s):  
M. Teresa Belmar-Beiny ◽  
Peter J. Fryer

SummaryFouling from milk fluids is a severe industrial problem which reduces the efficiency of process plant. The chemistry of fouling has been thoroughly investigated but the sequence of events that occur is not yet clear. Deposit contains both protein and minerals. Experiments have been carried out to determine the sequence of events in the fouling of stainless steel surfaces at 96 °C from turbulent flows of whey. Contact times between 4 and 210 s have been studied, and surface analysis techniques used to detect the distribution of elements. The first layer of deposit, formed after 4 s of contact between the fluid and the surface (fluid temperature 68 and 73 °C), consisted mainly of protein and was identified by X-ray photoelectron spectroscopy analysis. There was a lag phase of up to 150 s for a fluid temperature of 73 °C before deposit aggregates were observed to adsorb on to the surface. These aggregates were identified as protein and Ca by X-ray elemental mapping. No P was found in any experiments for this exposure. After 60 min contact time, however, both Ca and P were found at the interface between deposit and the stainless steel surface, irrespective of the Ca and P content of the test fluid.


1990 ◽  
Vol 201 ◽  
Author(s):  
P. J. John ◽  
V. J. Dyhouse ◽  
N. T. McDevitt ◽  
A. Safriet ◽  
J. S. Zabinski ◽  
...  

AbstractFilms of MoS2 have been successfully deposited on 440C stainless steel using an excimer laser. A comparison was made of films ablated with the laser operating at 193 nm and at 248 nm. The effects of substrate temperature were also studied. X-ray Photoelectron Spectroscopy (XPS) measurements indicated that the films were sulphur rich as compared to single crystal MoS2. Laser Raman measurements indicated that annealing was necessary to obtain crystalline films. All films exhibited coefficients of friction in the neighborhood of 0.03 in a dry nitrogen environment. Coefficients of friction in laboratory air were significantly higher.


2013 ◽  
Vol 295-298 ◽  
pp. 413-417 ◽  
Author(s):  
Zai Feng Shi ◽  
Su Min Zhang ◽  
Su Guo

To study the effects of substrate materials on the photocatalytic activity, TiO2films were immobilized on the inner wall surface of ceramic, glass and stainless steel tubes by sol-gel method. X-ray diffraction (XRD) results indicated that the crystal form of TiO2were all anatase type with theoretical particle size of 15 nm. According to the X-ray photoelectron spectroscopy (XPS) results, appearance of the element Na was observed which would decrease the photocatalytic activity. Scanning electron microscope (SEM) photos showed that the film coating on the ceramic and glass were even and uniform with thickness of about 300 nm and practical particle size of 20 nm to 100 nm. However, the film coating on stainless steel was hackly which would lead to diffraction of lights. The degradation rate constants of methylene blue (MB) with initial concentration of 5 mg.L-1were 0.049 min-1、0.029 min-1and 0.023 min-1with films coating on ceramic, stainless steel and glass tubes respectively. Degraded with TiO2film coating on ceramic tube, the according rate constants of phenol were 0.37, 0.14, 0.04 and 0.02 min-1for initial concentration of 2, 10, 50 and 100 mg.L-1respectively.


Sign in / Sign up

Export Citation Format

Share Document