Immunolocalization of Elastin, Collagen Type I and Type III, Fibronectin, and Vitronectin in Extracellular Matrix Components of Normal and Myxomatous Mitral Heart Valve Chordae Tendineae

1999 ◽  
Vol 8 (4) ◽  
pp. 203-211 ◽  
Author(s):  
Saeed Akhtar ◽  
Keith M Meek ◽  
V James
2021 ◽  
Vol 73 (1) ◽  
pp. 103-110
Author(s):  
Braca Kundalic ◽  
Sladjana Ugrenovic ◽  
Ivan Jovanovic ◽  
Vladimir Petrovic ◽  
Aleksandar Petrovic ◽  
...  

The aim of this study was to analyze the expression of extracellular matrix (ECM) proteins in human endoneurium during aging. We harvested 15 cadaveric sural nerves, distributed in 3 age groups (I: 25-44, II: 45-64, III: 65-86 years old). Histological sections were stained immunohistochemically for the presence of collagen type I, type IV and laminin, and the ImageJ processing program was used in morphometrical analysis to determine the percentages of these endoneurial proteins. In two younger groups, the endoneurial matrix of the sural nerve was composed from about equal proportions of these proteins, which may be considered a favorable microenvironment for the regeneration of nerve fibers. Linear regression analysis showed a significant increase in endoneurial collagen type IV with age, while collagen type I and laminin significantly decreased during the aging process. In cases older than 65 years, remodeling of the endoneurial matrix was observed to be significantly higher for the presence of collagen type IV, and lower for the expression of collagen type I and laminin. This age-related imbalance of ECM proteins could represent a disadvantageous microenvironment for nerve fiber regeneration in older adults. Our findings contribute to the development of therapeutic approaches for peripheral nerve regeneration.


2020 ◽  
Vol 98 (Supplement_2) ◽  
pp. 35-35
Author(s):  
Maegan A Reeves ◽  
Courtney E Charlton ◽  
Terry D Brandebourg

Abstract Given adipose tissue is histologically classified as connective tissue, we hypothesized expression of extracellular matrix (ECM) components are significantly altered during adipogenesis. However, little is known about the regulation of the ECM during adipose tissue development in the pig. Therefore, the objective of this study was to characterize expression of ECM components during porcine adipogenesis. Primary cultures of adipose tissue stromal-vascular cells were harvested from 3-day-old neonatal pigs (n=6) and preadipocytes induced to differentiate in vitro for 8 days in the presence of insulin, hydrocortisone, and rosiglitazone. Total RNA was extracted from these cultures on days 0 and 8 post-induction. Real-time PCR was then utilized to determine changes in mRNA expression for collagen type I alpha 1 chain (COL1A), collagen type I alpha 2 chain (COL2A), collagen type I alpha 3 chain (COL3A), collagen type I alpha 4 chain (COL4A), collagen type I alpha 6 chain (COL6A), biglycan, fibronectin, laminin, nitogen-1 (NID1), matrix metallopeptidase 2 (MMP2), matrix metallopeptidase 9 (MMP9), metallopeptidase inhibitor 3 (TIMP3). The mRNA abundances of COL1A, COL3A and MMP2 were significantly downregulated 2.86-fold (P < 0.05), 16.7-fold (P < 0.01) and 3.1-fold (P < 0.05) respectively in day 8 (differentiated) compared to day 0 (undifferentiated) cultures. Meanwhile, mRNA abundances were significantly upregulated during adipogenesis for the COL2A (2.82-fold; P < 0.05), COL4A (2.01-fold; P < 0.05), COL6A (2.8-fold; P < 0.05), biglycan (49.9- fold; P < 0.001), fibronectin (452-fold; P < 0.001), laminin (6.1-fold; P < 0.05), NID1(47.4-fold; P < 0.01), MMP9 (76.8- fold; P < 0.01), and TIMP3(3.04-fold; P < 0.05) genes. These data support the hypothesis that significant changes in ECM components occur during porcine adipogenesis. Modulating adipose tissue ECM remodeling might be a novel strategy to manipulate adiposity in the pig.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Shaohua Wu ◽  
Vikas Kumar ◽  
Peng Xiao ◽  
Mitchell Kuss ◽  
Jung Yul Lim ◽  
...  

AbstractHeart valve disease is a common manifestation of cardiovascular disease and is a significant cause of cardiovascular morbidity and mortality worldwide. The pulmonary valve (PV) is of primary concern because of its involvement in common congenital heart defects, and the PV is usually the site for prosthetic replacement following a Ross operation. Although effects of age on valve matrix components and mechanical properties for aortic and mitral valves have been studied, very little is known about the age-related alterations that occur in the PV. In this study, we isolated PV leaflets from porcine hearts in different age groups (~ 4–6 months, denoted as young versus ~ 2 years, denoted as adult) and studied the effects of age on PV leaflet thickness, extracellular matrix components, and mechanical properties. We also conducted proteomics and RNA sequencing to investigate the global changes of PV leaflets and passage zero PV interstitial cells in their protein and gene levels. We found that the size, thickness, elastic modulus, and ultimate stress in both the radial and circumferential directions and the collagen of PV leaflets increased from young to adult age, while the ultimate strain and amount of glycosaminoglycans decreased when age increased. Young and adult PV had both similar and distinct protein and gene expression patterns that are related to their inherent physiological properties. These findings are important for us to better understand the physiological microenvironments of PV leaflet and valve cells for correctively engineering age-specific heart valve tissues.


2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 1094.1-1094
Author(s):  
A. S. Siebuhr ◽  
P. Juhl ◽  
M. Karsdal ◽  
A. C. Bay-Jensen

Background:Interleukin 6 (IL-6) is known to have both pro- and anti-inflammatory properties, depending on the receptor activation. The classical IL-6 signaling via the membrane bound receptor is mainly anti-inflammatory, whereas signaling through the soluble receptor (sIL-6R) is pro-inflammatory/pro-fibrotic. However, the direct fibrotic effect of IL-6 stimulation on dermal fibroblasts is unknown.Objectives:We investigated the fibrotic effect of IL-6 + sIL-6R in a dermal fibroblast model and assessed fibrosis by neo-epitope biomarkers of extracellular matrix proteins.Methods:Primary healthy human dermal fibroblasts were grown for up to 17 days in DMEM medium with 0.4% fetal calf serum, ficoll (to produce a crowded environment) and ascorbic acid. IL-6 [1-90 nM]+sIL-6R [0.1-9 nM] alone or in combination with TGFβ [1 nM] were tested in three different donors. TGFβ [1 nM], PDGF-AB [3 nM] and non-stimulated cells (w/o) were used as controls. Tocilizumab (TCZ) with TGFβ + IL-6 + sIL-6R stimulation was tested in one donor. Collagen type I, III and VI formation (PRO-C1, PRO-C3 and PRO-C6) and fibronectin (FBN-C) were evaluated by validated ELISAs (Nordic Bioscience). Western blot analysis investigated signal cascades. Gene expression of selected ECM proteins was analyzed. Statistical analyses included One-way and 2-way ANOVA and area under the curve analysis.Results:formation by the end of the culture period. The fibronectin and collagen type VI signal were consistent between the three tested donors, whereas the formation of type III collagen was only increased in one donor, but in several trials. Type I collagen formation was unchanged by IL-6 + sIL-6R stimulation. The gene expression of type I collagen was induced by IL-6 + sIL-6R. Western blot analysis validated trans-signaling by the IL-6+sIL-6R stimulation as expected.IL-6 + sIL-6R stimulation in combination with TGFβ decreased fibronectin levels compared to TGFβ alone but did not reach the level of unstimulated fibroblasts. The formation of collagen type IV was generally unchanged with IL-6 + sIL-6R + TGFβ compared to TGFβ alone. Collagen type I and III formation was more scattered in the signals when IL-6 + sIL-6R was in combination with TGFβ, as the biomarker level could be either decreased or increased compared to TGFβ alone. In two studies the type I collagen level was synergistic increased by IL-6 + sIL-6R + TGFβ, whereas another study found the level to be decreased compared to TGFβ alone. The gene expression of fibronectin and type I collagen was increased with TGFβ +IL-6+sIL-6R compared to TGFβ alone.Inhibition of IL-6R by TCZ in combination with IL-6 + sIL-6R did only decrease the fibronectin level with the lowest TCZ concentration (p=0.03). TCZ alone decreased the fibronectin level in a dose-dependent manner (One-way ANOVA p=0.0002).Conclusion:We investigated the fibrotic response of dermal fibroblasts to IL-6 + sIL-6R stimulation. IL-6 modulated the fibronectin level and modulated the collagen type III formation level in a somewhat dose-dependent manner. In combination with TGFβ, IL-6 decreased collagen type I and IV formation and fibronectin. However, in this study inhibition of IL-6R by TCZ did not change the fibrotic response of the dermal fibroblasts. This study indicated that IL-6 did not induce collagen formation in dermal fibroblasts, except type III collagen formation with high IL-6 concentration.Figure:Disclosure of Interests:Anne Sofie Siebuhr Employee of: Nordic Bioscience, Pernille Juhl Employee of: Nordic Bioscience, Morten Karsdal Shareholder of: Nordic Bioscience A/S., Employee of: Full time employee at Nordic Bioscience A/S., Anne-Christine Bay-Jensen Shareholder of: Nordic Bioscience A/S, Employee of: Full time employee at Nordic Bioscience A/S.


Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Masayuki Shimano ◽  
Rei Shibata ◽  
Yukiomi Tsuji ◽  
Noriyuki Ouchi ◽  
Yasuya Inden ◽  
...  

The occurrence and development of atrial fibrillation (AF) are associated with changes in electrical properties and cardiac structure, known as electrical and structural atrial remodeling. AF characterized by atrial remodeling also occurs with obesity-related conditions. Adiponectin, an adipose tissue-derived hormone, exerts beneficial effects on the heart in various pathological conditions. These observations led us to speculate that adiponectin levels affect the development and prevalence of AF. Here, we investigated a potential association between circulating adiponectin levels and atrial remodeling in patients with AF. We measured plasma adiponectin levels, serum carboxy-terminal telopeptide of collagen type I (CITP) levels, as a collagen type I degradation marker, and serum type III procollagen-N-peptide (PIIINP) levels, as a collagen type III synthesis marker in consecutive 414 patients; 225 paroxysmal AF, 81 persistent AF and 108 paroxysmal supra-ventricular tachycardia without AF history (control) patients, who admitted for scheduled radiofrequency catheter ablation. Plasma adiponectin levels were significantly higher in patients with persistent AF compared to paroxysmal AF and control patients (p<0.05). Serum CITP levels, but not serum PIIINP levels, were also higher in patients with persistent AF compared to paroxysmal AF and control patients (p<0.05). In addition, a positive correlation was observed between adiponectin levels and CITP levels (r=0.39, p<0.005) or the P wave duration (r=−0.31, p<0.05) in patients with persistent AF. High plasma adiponectin levels are associated with the presence of persistent AF, which is accompanied by increased CITP levels. Hyperadiponectinemia might also attenuate atrial conduction disturbance. Thus, measurement of plasma adiponectin could be useful for assessment of AF.


2016 ◽  
Vol 11 ◽  
pp. BMI.S38439 ◽  
Author(s):  
Federica Genovese ◽  
Zsolt S. Kàrpàti ◽  
Signe H. Nielsen ◽  
Morten A. Karsdal

The aim of this study was to set up an ex vivo model for renal interstitial fibrosis in order to investigate the extracellular matrix (ECM) turnover profile in the fibrotic kidney. We induced kidney fibrosis in fourteen 12-week-old male Sprague Dawley rats by unilateral ureteral obstruction (UUO) surgery of the right ureter. The left kidney (contralateral) was used as internal control. Six rats were sham operated and used as the control group. Rats were terminated two weeks after the surgery; the kidneys were excised and precision-cut kidney slices (PCKSs) were cultured for five days in serum-free medium. Markers of collagen type I formation (P1NP), collagen type I and III degradation (C1M and C3M), and α-smooth muscle actin (αSMA) were measured in the PCKS supernatants by enzyme-linked immunosorbent assay. P1NP, C1M, C3M, and α-SMA were increased up to 2- to 13-fold in supernatants of tissue slices from the UUO-ligated kidneys compared with the contralateral kidneys ( P < 0.001) and with the kidneys of sham-operated animals ( P < 0.0001). The markers could also reflect the level of fibrosis in different animals. The UUO PCKS ex vivo model provides a valuable translational tool for investigating the extracellular matrix remodeling associated with renal interstitial fibrosis.


2005 ◽  
Vol 114 (3) ◽  
pp. 183-191 ◽  
Author(s):  
Tomoko Tateya ◽  
Jin Ho Sohn ◽  
Ichiro Tateya ◽  
Diane M. Bless

This study aimed to clarify the characteristics of rat vocal fold scarring by examining the alteration of key components in the extracellular matrix: hyaluronic acid, collagen, and fibronectin. Under monitoring with a 1.9-mm-diameter telescope, unilateral vocal fold stripping was performed, and larynges were harvested at 2, 4, 8, and 12 weeks after operation. The vocal folds were histologically analyzed with Alcian blue stain, trichrome stain, and immunofluorescence of collagen type I, collagen type III, and fibronectin. The scarred vocal folds showed less hyaluronic acid and more collagen types I and III than did the controls at all time points. Type III was stable for 12 weeks, while type I declined until 8 weeks and thereafter remained unchanged. Fibronectin increased for 4 weeks and then decreased; it was close to the control level at 8 and 12 weeks. These results suggest that the tissue remodeling process in scarred vocal folds slows down around 2 months after wounding.


2007 ◽  
Vol 293 (2) ◽  
pp. C661-C669 ◽  
Author(s):  
Catherine Alexakis ◽  
Terence Partridge ◽  
George Bou-Gharios

Because of its mechanical function, skeletal muscle is heavily influenced by the composition of its extracellular matrix (ECM). Fibrosis generated by chronic damage, such as occurs in muscular dystrophies, is thus particularly disastrous in this tissue. Here, we examined the interrelationship between the muscle satellite cell and the production of collagen type I, a major component of fibrotic ECM, by using both C2C12, a satellite cell-derived cell line, and primary muscle satellite cells. In C2C12 cells, we found that expression of collagen type I mRNA decreases substantially during skeletal muscle differentiation. On a single-cell level, collagen type I and myogenin became mutually exclusive after 3 days in differentiation medium, whereas addition of collagen markedly suppressed differentiation of C2C12 cells. Primary cultures of satellite cells associated with isolated single fibers of the young (4 wk old) mdx dystrophic mouse and of C57BL/10ScSn wild-type controls expressed collagen type I and type III mRNA and protein. This pattern persisted in wild-type mice at all ages. But, curiously, in older (18-mo-old) mdx mice, although the myogenic cells continued to express type III collagen, type I expression became restricted to nonmyogenic cells. These cells typically constituted part of a cellular sheet surrounding the old mdx fibers. This combination of features strongly suggests that the progression to fibrosis in dystrophic muscle involves changes in the mechanisms controlling matrix production, which generates positive feedback that results in a reprogramming of myoblasts to a profibrotic function.


1987 ◽  
Author(s):  
Philip G de Groot ◽  
Jan A van Mourik ◽  
Jan J Sixma

We have studies the binding of von Willebrand factor (vWF) to extracellular matrices of endothelial cells and smooth muscle cells and to the vessel wall of human umbilical arteries in relation to its function in supporting platelet adhesion at high shear rates. CLB-RAg 38, a monoclonal antibody directed against vWF inhibits the binding of 125I-vWF extracellular matrices completely. The binding of 125I-vWF to subendothelium is not inhibited, because there are many different binding sites. CLB-RAg 38 inhibits platelet adhesion to extracellular matrices and subendothelium, in sofar as it is dependent on plasma vWF. CLB-RAg 38 has no effect on adhesion depending on vWF already bound to the matrix or subendothelium. CLB-RAg 38 does not inhibit binding of vWF to collagen type I and type III. Another monoclonal antibody against vWF, CLB-RAg 201, completely inhibits binding of vWF to collagen type I and type III. CLB-RAg 201 does not inhibit binding of 125I-vWF ot the extracellular matrices. CLB-RAg 201 partly inhibits platelet adhesion but this inhibition is also present when the adhesion depends on vWF already present in matrix or subendothelium, indicating that CLB-RAg 201 also inhibits the adhesion of platelets directly, this in contrast to CLB-RAg 38. The epitopes for CLB-RAg 201 and 38 were found on different tryptic fragments of vWF. These data indicate that vWF binds to subendothelium and to matrices of cultured cells by mechanism that is different from binding to collagen.


Sign in / Sign up

Export Citation Format

Share Document