scholarly journals Precision-Cut Kidney Slices as a Tool to Understand the Dynamics of Extracellular Matrix Remodeling in Renal Fibrosis

2016 ◽  
Vol 11 ◽  
pp. BMI.S38439 ◽  
Author(s):  
Federica Genovese ◽  
Zsolt S. Kàrpàti ◽  
Signe H. Nielsen ◽  
Morten A. Karsdal

The aim of this study was to set up an ex vivo model for renal interstitial fibrosis in order to investigate the extracellular matrix (ECM) turnover profile in the fibrotic kidney. We induced kidney fibrosis in fourteen 12-week-old male Sprague Dawley rats by unilateral ureteral obstruction (UUO) surgery of the right ureter. The left kidney (contralateral) was used as internal control. Six rats were sham operated and used as the control group. Rats were terminated two weeks after the surgery; the kidneys were excised and precision-cut kidney slices (PCKSs) were cultured for five days in serum-free medium. Markers of collagen type I formation (P1NP), collagen type I and III degradation (C1M and C3M), and α-smooth muscle actin (αSMA) were measured in the PCKS supernatants by enzyme-linked immunosorbent assay. P1NP, C1M, C3M, and α-SMA were increased up to 2- to 13-fold in supernatants of tissue slices from the UUO-ligated kidneys compared with the contralateral kidneys ( P < 0.001) and with the kidneys of sham-operated animals ( P < 0.0001). The markers could also reflect the level of fibrosis in different animals. The UUO PCKS ex vivo model provides a valuable translational tool for investigating the extracellular matrix remodeling associated with renal interstitial fibrosis.

2010 ◽  
Vol 2 (2) ◽  
pp. 46
Author(s):  
Bambang Purwanto ◽  
A Guntur Hermawan

BACKGROUND: Use of doxorubicin (DXR) in the treatment of cancer has been increasing along with the increase in cancer morbidity. Nephrotoxic effects of DXR are still a problem. Pentoxyphylline (PTX) as an electron-donor material can be nephroprotective, so the combination of DXR and PTX might reduce the nephrotoxic effects of DXR. The aim of this study was to prove the nephroprotective effect of PTX and DXR nephrotoxicity through the improvement of TGF-β1, collage type-1, and renal interstitial fibrosis.METHODS: Twenty-four males Swiss strain mice, divided into three groups namely Control (C) injected with NaCl 0.9%; DXR induced nephrotoxicity (D); and effect of PTX on D (P/D) by intraperitoneally, respectively, each group consisted of 8 mice. Injections were given once a week for three consecutive weeks. At 8th week post-treatment, all eight mice of each group were sacrificed. Examination of TGF-β1 and collagen type-I expression was done by immunohistochemistry with monoclonal antibody. Renal interstitial fibrosis examination was done by a histopathologist, using Verheoff van Giesen staining. The statistic analysis was carried out using one-way ANOVA.RESULTS: TGF-β1 expression increased from C to D and subsequently decreased in P/D (4.50±3.89 vs. 177.88±68.78 vs. 36.88±9.51). Collagen type-I expression increased from C to D and subsequently decreased in P/D (12.00±14.32 vs. 186.25±125.62 vs. 36.00±29.14). Renal interstitial fibrosis expression increased from C to D and subsequently decreased in P/D (16.75±6.14 vs. 85.00±7.33 vs. 60.50±11.40). The expression of TGF-β1, collagen type-1, and renal interstitial fibrosis were higher significantly in D group as compared to C group (p<0,001). The expression of TGF-β1, collagen type-1, and renal interstitial fibrosis were lower significantly in P/D group as compared to D group (p<0.005).CONCLUSIONS: PTX was proved to be nephroprotector inducing by DXR.KEYWORDS: PTX, nephroprotector, TGF-β1, collagen type-I, renal interstitial fibrosis


Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Olga Lettau ◽  
Susanne Rutschow ◽  
Sebastian Jaeger ◽  
Uwe Kuehl ◽  
Kerstin Puhl ◽  
...  

Introduction: The biopsy based analyse, with histological, immunohistological and molecular biological analysis of myocardial tissues, represents the only possible tool to investigate the basement of inflammatory cardiomyopathy. Since development of this disease assume involvement of extracellular matrix remodelling, the analyze of this process were aimed in this article. Methods and results: Endomyocardial biopsies from patient with inflammatory cardiomyopathy (n=170) were analysed by RT-PCR, Furthermore, histological, immunohistological and biochemical methods (ELISA) were used to estimate the matrix proteins amount in myocardial tissues (n=36). All results were obtained by comparison of patient groups regarding to left ventricular ejection fraction (LVEF), EF>60 versus EF<30. EF<30 group featured significaly increased inflammation cells per surface area: CD3 (p<0.001), CD11a (p<0.02), CD45 (p<0.02), Mac1 (p<0.02) and HLA (p<0.01). The gene expression revealed an increased transcripts number of IL-2 (p<0.01), IL-5 (p<0.01), IL-6 (p<0.02), INF beta (p<0.039), Collagen type I (p<0.001), III (p<0.0014) and IV (p<0.0004) as well Laminin (p<0.001). On the protein level ICTP (p<0.04), MMP9 (p<0.04) and TIMP I (p<0.01) were significaly increased in this group in comparison with EF>60 group. The escalating number of active CD3 cells correlated positively with BNP (ρ=0.624, p<0.0091), adhesion cell number ICAM (ρ=0.682, p<0.01) and VCAM (ρ=0.475, p<0.01) and with uPA (ρ =0.265, p<0.013), as well as with increased quantity of collagen type III per section area (ρ=0.632, p<0.01). The expanded abundance of type I collagen products was clearly dependent of the expression of collagen I gene (ρ=0.575, p<0.002) and uPA (ρ=0.544, p<0.004). Precise correlation between the amount of MMP 9 protein and downward EV values (ρ=− 0.4133, p<0.0073) was also observed in the patient group with EF<30. Conclusion: Myocardial inflammation lead to an imbalance in the MMP/TIMP system with development of myocardial fibrosis with significant correlation to LV-dysfunction. Extracellular matrix remodeling with an imbalance in the MMP/TIMP system plays an important role in the development of left ventricular dysfunction in inflammatory heart disease


Cells ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1046
Author(s):  
Jorge Martinez ◽  
Patricio C. Smith

Desmoplastic tumors correspond to a unique tissue structure characterized by the abnormal deposition of extracellular matrix. Breast tumors are a typical example of this type of lesion, a property that allows its palpation and early detection. Fibrillar type I collagen is a major component of tumor desmoplasia and its accumulation is causally linked to tumor cell survival and metastasis. For many years, the desmoplastic phenomenon was considered to be a reaction and response of the host tissue against tumor cells and, accordingly, designated as “desmoplastic reaction”. This notion has been challenged in the last decades when desmoplastic tissue was detected in breast tissue in the absence of tumor. This finding suggests that desmoplasia is a preexisting condition that stimulates the development of a malignant phenotype. With this perspective, in the present review, we analyze the role of extracellular matrix remodeling in the development of the desmoplastic response. Importantly, during the discussion, we also analyze the impact of obesity and cell metabolism as critical drivers of tissue remodeling during the development of desmoplasia. New knowledge derived from the dynamic remodeling of the extracellular matrix may lead to novel targets of interest for early diagnosis or therapy in the context of breast tumors.


2020 ◽  
Vol 98 (Supplement_2) ◽  
pp. 35-35
Author(s):  
Maegan A Reeves ◽  
Courtney E Charlton ◽  
Terry D Brandebourg

Abstract Given adipose tissue is histologically classified as connective tissue, we hypothesized expression of extracellular matrix (ECM) components are significantly altered during adipogenesis. However, little is known about the regulation of the ECM during adipose tissue development in the pig. Therefore, the objective of this study was to characterize expression of ECM components during porcine adipogenesis. Primary cultures of adipose tissue stromal-vascular cells were harvested from 3-day-old neonatal pigs (n=6) and preadipocytes induced to differentiate in vitro for 8 days in the presence of insulin, hydrocortisone, and rosiglitazone. Total RNA was extracted from these cultures on days 0 and 8 post-induction. Real-time PCR was then utilized to determine changes in mRNA expression for collagen type I alpha 1 chain (COL1A), collagen type I alpha 2 chain (COL2A), collagen type I alpha 3 chain (COL3A), collagen type I alpha 4 chain (COL4A), collagen type I alpha 6 chain (COL6A), biglycan, fibronectin, laminin, nitogen-1 (NID1), matrix metallopeptidase 2 (MMP2), matrix metallopeptidase 9 (MMP9), metallopeptidase inhibitor 3 (TIMP3). The mRNA abundances of COL1A, COL3A and MMP2 were significantly downregulated 2.86-fold (P &lt; 0.05), 16.7-fold (P &lt; 0.01) and 3.1-fold (P &lt; 0.05) respectively in day 8 (differentiated) compared to day 0 (undifferentiated) cultures. Meanwhile, mRNA abundances were significantly upregulated during adipogenesis for the COL2A (2.82-fold; P &lt; 0.05), COL4A (2.01-fold; P &lt; 0.05), COL6A (2.8-fold; P &lt; 0.05), biglycan (49.9- fold; P &lt; 0.001), fibronectin (452-fold; P &lt; 0.001), laminin (6.1-fold; P &lt; 0.05), NID1(47.4-fold; P &lt; 0.01), MMP9 (76.8- fold; P &lt; 0.01), and TIMP3(3.04-fold; P &lt; 0.05) genes. These data support the hypothesis that significant changes in ECM components occur during porcine adipogenesis. Modulating adipose tissue ECM remodeling might be a novel strategy to manipulate adiposity in the pig.


2019 ◽  
Vol 316 (6) ◽  
pp. F1162-F1172 ◽  
Author(s):  
Qingqing Wei ◽  
Jennifer Su ◽  
Guie Dong ◽  
Ming Zhang ◽  
Yuqing Huo ◽  
...  

Renal interstitial fibrosis is a common pathological feature of chronic kidney disease that may involve changes of metabolism in kidney cells. In the present study, we first showed that blockade of glycolysis with either dichloroacetate (DCA) or shikonin to target different glycolytic enzymes reduced renal fibrosis in a mouse model of unilateral ureteral obstruction (UUO). Both inhibitors evidently suppressed the induction of fibronectin and collagen type I in obstructed kidneys, with DCA also showing inhibitory effects on collagen type IV and α-smooth muscle actin (α-SMA). Histological examination also confirmed less collagen deposition in DCA-treated kidneys. Both DCA and shikonin significantly inhibited renal tubular apoptosis but not interstitial apoptosis in UUO. Macrophage infiltration after UUO injury was also suppressed. Shikonin, but not DCA, caused obvious animal weight loss during UUO. To determine whether shikonin and DCA worked on tubular cells and/or fibroblasts, we tested their effects on cultured renal proximal tubular BUMPT cells and renal NRK-49F fibroblasts during hypoxia or transforming growth factor-β1 treatment. Although both inhibitors reduced fibronectin and α-SMA production in NRK-49F cells during hypoxia or transforming growth factor-β1 treatment, they did not suppress fibronectin and α-SMA expression in BUMPT cells. Altogether, these results demonstrate the inhibitory effect of glycolysis inhibitors on renal interstitial fibrosis. In this regard, DCA is more potent for fibrosis inhibition and less toxic to animals than shikonin.


2004 ◽  
Vol 167 (4) ◽  
pp. 757-767 ◽  
Author(s):  
Tae-Hwa Chun ◽  
Farideh Sabeh ◽  
Ichiro Ota ◽  
Hedwig Murphy ◽  
Kevin T. McDonagh ◽  
...  

During angiogenesis, endothelial cells initiate a tissue-invasive program within an interstitial matrix comprised largely of type I collagen. Extracellular matrix–degradative enzymes, including the matrix metalloproteinases (MMPs) MMP-2 and MMP-9, are thought to play key roles in angiogenesis by binding to docking sites on the cell surface after activation by plasmin- and/or membrane-type (MT) 1-MMP–dependent processes. To identify proteinases critical to neovessel formation, an ex vivo model of angiogenesis has been established wherein tissue explants from gene-targeted mice are embedded within a three-dimensional, type I collagen matrix. Unexpectedly, neither MMP-2, MMP-9, their cognate cell-surface receptors (i.e., β3 integrin and CD44), nor plasminogen are essential for collagenolytic activity, endothelial cell invasion, or neovessel formation. Instead, the membrane-anchored MMP, MT1-MMP, confers endothelial cells with the ability to express invasive and tubulogenic activity in a collagen-rich milieu, in vitro or in vivo, where it plays an indispensable role in driving neovessel formation.


2011 ◽  
Vol 300 (4) ◽  
pp. C907-C918 ◽  
Author(s):  
Matilde Alique ◽  
Laura Calleros ◽  
Alicia Luengo ◽  
Mercedes Griera ◽  
Miguel Ángel Iñiguez ◽  
...  

Glomerular diseases are characterized by a sustained synthesis and accumulation of abnormal extracellular matrix proteins, such as collagen type I. The extracellular matrix transmits information to cells through interactions with membrane components, which directly activate many intracellular signaling events. Moreover, accumulating evidence suggests that eicosanoids derived from cyclooxygenase (COX)-2 participate in a number of pathological processes in immune-mediated renal diseases, and it is known that protein kinase B (AKT) may act through different transcription factors in the regulation of the COX-2 promoter. The present results show that progressive accumulation of collagen I in the extracellular medium induces a significant increase of COX-2 expression in human mesangial cells, resulting in an enhancement in PGE2 production. COX-2 overexpression is due to increased COX-2 mRNA levels. The study of the mechanism implicated in COX-2 upregulation by collagen I showed focal adhesion kinase (FAK) activation. Furthermore, we observed that the activation of the phosphatidylinositol 3-kinase (PI3K)/AKT pathway by collagen I and collagen I-induced COX-2 overexpression was abolished by PI3K and AKT inhibitors. Additionally, we showed that the cAMP response element (CRE) transcription factor is implicated. Finally, we studied COX-2 expression in an animal model, NG-nitro-l-arginine methyl ester hypertensive rats. In renal tissue and vascular walls, COX-2 and collagen type I content were upregulated. In summary, our results provide evidence that collagen type I increases COX-2 expression via the FAK/PI3K/AKT/cAMP response element binding protein signaling pathway.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Sang In Park ◽  
Yun-Young Sunwoo ◽  
Yu Jin Jung ◽  
Woo Chul Chang ◽  
Moon-Seo Park ◽  
...  

Acupuncture regulates inflammation process and growth factors by increasing blood circulation in affected areas. In this study, we examined whether acupuncture has an effect on wound healing in injured rat. Rats were assigned randomly into two groups: control group and acupuncture group. Acupuncture treatment was carried out at 8 sites around the wounded area. We analyzed the wound area, inflammatory cytokines, proliferation of resident cells, and angiogenesis and induction of extracelluar matrix remodeling. At 7 days after-wounding the wound size in acupuncture-treat group was decreased more significantly compared to control group. In addition, the protein levels of proinflammatory cytokines such as tumor necrosis factor-α(TNF-α) and interleukin-1β(IL-1β) were significantly decreased compared to the control at 2 and 7 days post-wounding. Also, we analyzed newly generated cells by performing immunostaining for PCNA and using several phenotype markers such as CD-31,α-SMA, and collagen type I. In acupuncture-treated group, PCNA-positive cell was increased and PCNA labeled CD-31-positive vessels,α-SMA- and collagen type I-positive fibroblastic cells, were increased compared to the control group at 7 days post-wounding. These results suggest that acupuncture may improve wound healing through decreasing pro-inflammatory response, increasing cell proliferation and angiogenesis, and inducing extracellular matrix remodeling.


2020 ◽  
Author(s):  
A. E. Hafner ◽  
N. G. Gyori ◽  
C. A. Bench ◽  
L. K. Davis ◽  
A. Šarić

One of the most robust examples of self-assembly in living organisms is the formation of collagen architectures. Collagen type I molecules are a crucial component of the extracellular-matrix where they self-assemble into fibrils of well defined striped patterns. This striped fibrilar pattern is preserved across the animal kingdom and is important for the determination of cell phenotype, cell adhesion, and tissue regulation and signalling. The understanding of the physical processes that determine such a robust morphology of self-assembled collagen fibrils is currently almost completely missing. Here we develop a minimal coarse-grained computational model to identify the physical principles of the assembly of collagen-mimetic molecules. We find that screened electrostatic interactions can drive the formation of collagen-like filaments of well-defined striped morphologies. The fibril pattern is determined solely by the distribution of charges on the molecule and is robust to the changes in protein concentration, monomer rigidity, and environmental conditions. We show that the fibril pattern cannot be easily predicted from the interactions between two monomers, but is an emergent result of multi-body interactions. Our results can help address collagen remodelling in diseases and ageing, and guide the design of collagen scaffolds for biotechnological applications.Statement of SignificanceCollagen type I protein is the most abundant protein in mammals. It is a crucial component of the extracellular-matrix where it robustly self-assembles into fibrils of specific striped architectures that are crucial for the correct collagen function. The molecular features that determine such robust fibril architectures are currently not well understood. Here we develop a minimal coarse-grained model to connect the design of collagen-like molecules to the architecture of the resulting self-assembled fibrils. We find that the pattern of charged residues on the surface of molecules can drive the formation of collagen-like fibrils and fully control their architectures. Our findings can help understand changes in collagen architectures observed in diseases and guide the design of synthetic collagen scaffolds.


Sign in / Sign up

Export Citation Format

Share Document