Simulated-Use Polytetrafluorethylene Biofilm Model: Repeated Rounds of Complete Reprocessing Lead to Accumulation of Organic Debris and Viable Bacteria

2017 ◽  
Vol 38 (11) ◽  
pp. 1284-1290 ◽  
Author(s):  
Michelle J. Alfa ◽  
Harminder Singh ◽  
Zoann Nugent ◽  
Donald Duerksen ◽  
Gale Schultz ◽  
...  

OBJECTIVEBiofilm has been implicated in bacterial persistence and survival after endoscope reprocessing. In this study, we assessed the impact of different methods of reprocessing on organic residues and viable bacteria after repeated rounds of biofilm formation when each was followed by full reprocessing.METHODSATS-2015, an artificial test soil containing 5–8 Log10 colony-forming units (CFU) of Enterococcus faecalis and Pseudomonas aeruginosa, was used to form biofilm in polytetrafluroethylene channels overnight on 5 successive days. Each successive day, full pump-assisted cleaning using bristle brushes or pull-through devices in combination with enzymatic or nonenzymatic detergents followed by fully automated endoscope reprocessor disinfection using peracetic acid was performed. Residuals were visualized by scanning electron microscopy (SEM). Destructive testing was used to assess expected cutoffs for adenosine triphosphate (ATP; <200 relative light units), protein (<2 µg/cm2), and viable bacteria count (0 CFU).RESULTSProtein residuals were above 2 µg/cm2, but ATP residuals were <200 relative light units for all methods tested. Only when enzymatic cleaner was used for cleaning were there no viable bacteria detected after disinfection irrespective of whether bristle brushes or pull-through devices were used. SEM revealed that some residual debris remained after all reprocessing methods, but more residuals were detected when a nonenzymatic detergent was used.CONCLUSIONSSurviving E. faecalis and P. aeruginosa were only detected when the non-enzymatic detergent was used, emphasizing the importance of the detergent used for endoscope channel reprocessing. Preventing biofilm formation is critical because not all current reprocessing methods can reliably eliminate viable bacteria within the biofilm matrix.Infect Control Hosp Epidemiol 2017;38:1284–1290

Foods ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 542
Author(s):  
Marcin Kruk ◽  
Monika Trząskowska

This study aimed to analyse the impact of sanitation methods on the formation of bacterial biofilms after disinfection and during the germination process of mung bean on seeds and in the germination environment. Moreover, the influence of Lactobacillus plantarum 299v on the growth of the tested pathogenic bacteria was evaluated. Three strains of Salmonella and E. coli were used for the study. The colony forming units (CFU), the crystal violet (CV), the LIVE/DEAD and the gram fluorescent staining, the light and the scanning electron microscopy (SEM) methods were used. The tested microorganisms survive in a small number. During germination after disinfection D2 (20 min H2O at 60 °C, then 15 min in a disinfecting mixture consisting of H2O, H2O2 and CH₃COOH), the biofilms grew most after day 2, but with the DP2 method (D2 + L. plantarum 299v during germination) after the fourth day. Depending on the method used, the second or fourth day could be a time for the introduction of an additional growth-limiting factor. Moreover, despite the use of seed disinfection, their germination environment could be favourable for the development of bacteria and, consequently, the formation of biofilms. The appropriate combination of seed disinfection methods and growth inhibition methods at the germination stage will lead to the complete elimination of the development of unwanted microflora and their biofilms.


2016 ◽  
Vol 6 (01) ◽  
pp. 5218
Author(s):  
Laxmi Mohandas ◽  
Anju T. R. ◽  
Sarita G. Bhat*

An assortment of redox-active phenazine compounds like pyocyanin with their characteristic blue-green colour are synthesized by Pseudomonas aeruginosa, Gram-negative opportunistic pathogens, which are also considered one of the most commercially valuable microorganisms. In this study, pyocyanin from Pseudomonas aeruginosa BTRY1 from food sample was assessed for its antibiofilm activity by micro titer plate assay against strong biofilm producers belonging to the genera Bacillus, Staphylococcus, Brevibacterium and Micrococcus. Pyocyanin inhibited biofilm activity in very minute concentrations. This was also confirmed by Scanning Electron Microscopy (SEM) and Confocal Laser Scanning Microscopy (CLSM). Both SEM and CLSM helped to visualize the biocontrol of biofilm formation by eight pathogens. The imaging and quantification by CLSM also established the impact of pyocyanin on biofilm-biocontrol mainly in the food industry.


2021 ◽  
Vol 10 (8) ◽  
pp. 1641
Author(s):  
Stefanie Kligman ◽  
Zhi Ren ◽  
Chun-Hsi Chung ◽  
Michael Angelo Perillo ◽  
Yu-Cheng Chang ◽  
...  

Implant surface design has evolved to meet oral rehabilitation challenges in both healthy and compromised bone. For example, to conquer the most common dental implant-related complications, peri-implantitis, and subsequent implant loss, implant surfaces have been modified to introduce desired properties to a dental implant and thus increase the implant success rate and expand their indications. Until now, a diversity of implant surface modifications, including different physical, chemical, and biological techniques, have been applied to a broad range of materials, such as titanium, zirconia, and polyether ether ketone, to achieve these goals. Ideal modifications enhance the interaction between the implant’s surface and its surrounding bone which will facilitate osseointegration while minimizing the bacterial colonization to reduce the risk of biofilm formation. This review article aims to comprehensively discuss currently available implant surface modifications commonly used in implantology in terms of their impact on osseointegration and biofilm formation, which is critical for clinicians to choose the most suitable materials to improve the success and survival of implantation.


Antibiotics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 625
Author(s):  
Fatma Y. Ahmed ◽  
Usama Farghaly Aly ◽  
Rehab Mahmoud Abd El-Baky ◽  
Nancy G. F. M. Waly

Most of the infections caused by multi-drug resistant (MDR) P. aeruginosa strains are extremely difficult to be treated with conventional antibiotics. Biofilm formation and efflux pumps are recognized as the major antibiotic resistance mechanisms in MDR P. aeruginosa. Biofilm formation by P. aeruginosa depends mainly on the cell-to-cell communication quorum-sensing (QS) systems. Titanium dioxide nanoparticles (TDN) have been used as antimicrobial agents against several microorganisms but have not been reported as an anti-QS agent. This study aims to evaluate the impact of titanium dioxide nanoparticles (TDN) on QS and efflux pump genes expression in MDR P. aeruginosa isolates. The antimicrobial susceptibility of 25 P. aeruginosa isolates were performed by Kirby–Bauer disc diffusion. Titanium dioxide nanoparticles (TDN) were prepared by the sol gel method and characterized by different techniques (DLS, HR-TEM, XRD, and FTIR). The expression of efflux pumps in the MDR isolates was detected by the determination of MICs of different antibiotics in the presence and absence of carbonyl cyanide m-chlorophenylhydrazone (CCCP). Biofilm formation and the antibiofilm activity of TDN were determined using the tissue culture plate method. The effects of TDN on the expression of QS genes and efflux pump genes were tested using real-time polymerase chain reaction (RT-PCR). The average size of the TDNs was 64.77 nm. It was found that TDN showed a significant reduction in biofilm formation (96%) and represented superior antibacterial activity against P. aeruginosa strains in comparison to titanium dioxide powder. In addition, the use of TDN alone or in combination with antibiotics resulted in significant downregulation of the efflux pump genes (MexY, MexB, MexA) and QS-regulated genes (lasR, lasI, rhll, rhlR, pqsA, pqsR) in comparison to the untreated isolate. TDN can increase the therapeutic efficacy of traditional antibiotics by affecting efflux pump expression and quorum-sensing genes controlling biofilm production.


Author(s):  
Surinder Kaur M. S. Pada ◽  
Poh Lishi ◽  
Kim Sim Ng ◽  
Sarathamani Rethenam ◽  
Lilibeth Silagan Alenton ◽  
...  

Abstract Background Computerisation of various processes in hospitals and reliance on electronic devices raises the concern of contamination of these devices from the patient environment. We undertook this study to determine if an attached hand hygiene device that unlocks the screen of a computer on wheels (COW) on usage can be effective in decreasing the microbiological burden on computer keyboards. Methods An electronic hand sanitizer was integrated onto the COW. A prospective cohort study with a crossover design involving 2 control and 2 intervention wards was used. The study end point was the number of colony forming units found on the keyboards. Bacteria were classified into 4 main groups; pathogenic, skin flora, from the environment or those thought to be commensals in healthy individuals. We then used a mixed effects model for the statistical analysis to determine if there were any differences before and after the intervention. Results Thirty-nine keyboards were swabbed at baseline, day 7 and 14, with 234 keyboards cultured, colony forming units (CFUs) counted and organisms isolated. By mixed model analysis, the difference of mean bacteria count between intervention and control for week 1 was 32.74 (− 32.74, CI − 94.29 to 28.75, p = 0.29), for week 2 by 155.86 (− 155.86, CI − 227.45 to − 83.53, p < 0.0001), and after the 2-week period by 157.04 (− 157.04, CI − 231.53 to − 82.67, p < 0.0001). In the sub-analysis, there were significant differences of pathogenic bacteria counts for the Intervention as compared to the Control in contrast with commensal counts. Conclusion A hand hygiene device attached to a COW may be effective in decreasing the microbiological burden on computer keyboards.


2021 ◽  
Vol 9 (6) ◽  
pp. 232596712110156
Author(s):  
Sebastian Müller ◽  
Tanja Schwenk ◽  
Michael de Wild ◽  
Dimitris Dimitriou ◽  
Claudio Rosso

Background: Cheese-wiring, the suture that cuts through the meniscus, is a well-known issue in meniscal repair. So far, contributing factors are neither fully understood nor sufficiently studied. Hypothesis/Purpose: To investigate whether the construct stiffness of repair sutures and devices correlates with suture cut-through (cheese-wiring) during load-to-failure testing. Study Design: Controlled laboratory study. Methods: In 131 porcine menisci, longitudinal bucket-handle tears were repaired using either inside-out sutures (n = 66; No. 0 Ultrabraid, 2-0 Orthocord, 2-0 FiberWire, and 2-0 Ethibond) or all-inside devices (n = 65; FastFix360, Omnispan, and Meniscal Cinch). After cyclic loading, load-to-failure testing was performed. The mode of failure and construct stiffness were recorded. A receiver operating characteristic curve analysis was performed to define the optimal stiffness threshold for predicting meniscal repair failure by cheese-wiring. The 2-tailed t test and analysis of variance were used to test significance. Results: Loss of suture fixation was the most common mode of failure in all specimens (58%), except for the Omnispan, which failed most commonly because of anchor pull-through. The Omnispan demonstrated the highest construct stiffness (30.8 ± 3.5 N/mm), whereas the Meniscal Cinch (18.0 ± 8.8 N/mm) and Ethibond (19.4 ± 7.8 N/mm) demonstrated the lowest construct stiffness. The Omnispan showed significantly higher stiffness compared with the Meniscal Cinch ( P < .001) and Ethibond ( P = .02), whereas the stiffness of the Meniscal Cinch was significantly lower compared with that of the FiberWire ( P = .01), Ultrabraid ( P = .04), and FastFix360 ( P = .03). While meniscal repair with a high construct stiffness more often failed by cheese-wiring, meniscal repair with a lower stiffness failed by loss of suture fixation, knot slippage, or anchor pull-through. Meniscal repair with a stiffness >26.5 N/mm had a 3.6 times higher risk of failure due to cheese-wiring during load-to-failure testing (95% CI, 1.4-8.2; P < .0001). Conclusion: Meniscal repair using inside-out sutures and all-inside devices with a higher construct stiffness (>26.5 N/mm) was more likely to fail through suture cut-through (cheese-wiring) than that with a lower stiffness (≤26.5 N/mm). Clinical Relevance: This is the first study investigating the impact of construct stiffness on meniscal repair failure by suture cut-through (cheese-wiring).


2020 ◽  
Vol 100 (1) ◽  
pp. 82-89
Author(s):  
C.M.A.P. Schuh ◽  
B. Benso ◽  
P.A. Naulin ◽  
N.P. Barrera ◽  
L. Bozec ◽  
...  

Biofilm-mediated oral diseases such as dental caries and periodontal disease remain highly prevalent in populations worldwide. Biofilm formation initiates with the attachment of primary colonizers onto surfaces, and in the context of caries, the adhesion of oral streptococci to dentinal collagen is crucial for biofilm progression. It is known that dentinal collagen suffers from glucose-associated crosslinking as a function of aging or disease; however, the effect of collagen crosslinking on the early adhesion and subsequent biofilm formation of relevant oral streptococci remains unknown. Therefore, the aim of this work was to determine the impact of collagen glycation on the initial adhesion of primary colonizers such as Streptococcus mutans UA159 and Streptococcus sanguinis SK 36, as well as its effect on the early stages of streptococcal biofilm formation in vitro. Type I collagen matrices were crosslinked with either glucose or methylglyoxal. Atomic force microscopy nanocharacterization revealed morphologic and mechanical changes within the collagen matrix as a function of crosslinking, such as a significantly increased elastic modulus in crosslinked fibrils. Increased nanoadhesion forces were observed for S. mutans on crosslinked collagen surfaces as compared with the control, and retraction curves obtained for both streptococcal strains demonstrated nanoscale unbinding behavior consistent with bacterial adhesin-substrate coupling. Overall, glucose-crosslinked substrates specifically promoted the initial adhesion, biofilm formation, and insoluble extracellular polysaccharide production of S. mutans, while methylglyoxal treatment reduced biofilm formation for both strains. Changes in the adhesion behavior and biofilm formation of oral streptococci as a function of collagen glycation could help explain the biofilm dysbiosis seen in older people and patients with diabetes. Further studies are necessary to determine the influence of collagen crosslinking on the balance between acidogenic and nonacidogenic streptococci to aid in the development of novel preventive and therapeutic treatment against dental caries in these patients.


2017 ◽  
Vol 75 (12) ◽  
pp. 2818-2828 ◽  
Author(s):  
Joshua P. Boltz ◽  
Bruce R. Johnson ◽  
Imre Takács ◽  
Glen T. Daigger ◽  
Eberhard Morgenroth ◽  
...  

The accuracy of a biofilm reactor model depends on the extent to which physical system conditions (particularly bulk-liquid hydrodynamics and their influence on biofilm dynamics) deviate from the ideal conditions upon which the model is based. It follows that an improved capacity to model a biofilm reactor does not necessarily rely on an improved biofilm model, but does rely on an improved mathematical description of the biofilm reactor and its components. Existing biofilm reactor models typically include a one-dimensional biofilm model, a process (biokinetic and stoichiometric) model, and a continuous flow stirred tank reactor (CFSTR) mass balance that [when organizing CFSTRs in series] creates a pseudo two-dimensional (2-D) model of bulk-liquid hydrodynamics approaching plug flow. In such a biofilm reactor model, the user-defined biofilm area is specified for each CFSTR; thereby, Xcarrier does not exit the boundaries of the CFSTR to which they are assigned or exchange boundaries with other CFSTRs in the series. The error introduced by this pseudo 2-D biofilm reactor modeling approach may adversely affect model results and limit model-user capacity to accurately calibrate a model. This paper presents a new sub-model that describes the migration of Xcarrier and associated biofilms, and evaluates the impact that Xcarrier migration and axial dispersion has on simulated system performance. Relevance of the new biofilm reactor model to engineering situations is discussed by applying it to known biofilm reactor types and operational conditions.


2021 ◽  
Vol 9 (2) ◽  
pp. 428
Author(s):  
María Carmen Sánchez ◽  
Andrea Alonso-Español ◽  
Honorato Ribeiro-Vidal ◽  
Bettina Alonso ◽  
David Herrera ◽  
...  

Microbial biofilm modeling has improved in sophistication and scope, although only a limited number of standardized protocols are available. This review presents an example of a biofilm model, along with its evolution and application in studying periodontal and peri-implant diseases. In 2011, the ETEP (Etiology and Therapy of Periodontal and Peri-Implant Diseases) research group at the University Complutense of Madrid developed an in vitro biofilm static model using representative bacteria from the subgingival microbiota, demonstrating a pattern of bacterial colonization and maturation similar to in vivo subgingival biofilms. When the model and its methodology were standardized, the ETEP research group employed the validated in vitro biofilm model for testing in different applications. The evolution of this model is described in this manuscript, from the mere observation of biofilm growth and maturation on static models on hydroxyapatite or titanium discs, to the evaluation of the impact of dental implant surface composition and micro-structure using the dynamic biofilm model. This evolution was based on reproducing the ideal microenvironmental conditions for bacterial growth within a bioreactor and reaching the target surfaces using the fluid dynamics mimicking the salivary flow. The development of this relevant biofilm model has become a powerful tool to study the essential processes that regulate the formation and maturation of these important microbial communities, as well as their behavior when exposed to different antimicrobial compounds.


Sign in / Sign up

Export Citation Format

Share Document