scholarly journals Analysis of local ice crystal growth in snow

2016 ◽  
Vol 62 (232) ◽  
pp. 378-390 ◽  
Author(s):  
QUIRINE KROL ◽  
HENNING LÖWE

ABSTRACTThe structural evolution of snow under metamorphism is one of the key challenges in snow modeling. The main driving forces for metamorphism are curvature differences and temperature gradients, inducing water vapor transport and corresponding crystal growth, which is detectable by the motion of the ice/air interface. To provide quantitative means for a microscopic validation of metamorphism models, a VTK-based image analysis method is developed to track the ice/air interface in time-lapse μCT experiments to measure local interface velocities under both, isothermal and temperature gradient conditions. Using estimates of local temperatures from microstructure-based finite element simulations, a quantitative comparison of measured interface velocities with theoretical expressions is facilitated. For isothermal metamorphism, the data are compared with a kinetics and a diffusion limited growth law. In both cases the data are largely scattered but consistently show a mean curvature dependency of the interface velocity. For temperature gradient metamorphism, we confirm that the main contribution stems from the temperature gradient induced vapor flux, accompanied by effects of mean curvature as a secondary process. The scatter and uncertainties are discussed in view of the present theoretical understanding, the experimental setup and complications such as mechanical deformations.

1998 ◽  
Vol 9 (2) ◽  
pp. 128-161 ◽  
Author(s):  
C.E. Smith

This review focuses on the process of enamel maturation, a series of events associated with slow, progressive growth in the width and thickness of apatitic crystals. This developmental step causes gradual physical hardening and transformation of soft, newly formed enamel into one of the most durable mineralized tissues produced biologically. Enamel is the secretory product of specialized epithelial cells, the ameloblasts, which make this covering on the crowns of teeth in two steps. First, they roughly "map out" the location and limits (overall thickness) of the entire extracellular layer as a protein-rich, acellular, and avascular matrix filled with thin, ribbon-like crystals of carbonated hydroxyapatite. These initial crystals are organized spatially into rod and interrod territories as they form, and rod crystals are lengthened by Tomes' processes in tandem with appositional movement of ameloblasts away from the dentin surface. Once the full thickness of enamel has been formed, ameloblasts initiate a series of repetitive morphological changes at the enamel surface in which tight junctions and deep membrane infoldings periodically appear (ruffle-ended), then disappear for short intervals (smooth-ended), from the apical ends of the cells. As this happens, the enamel covered by these cells changes rhythmically in net pH from mildly acidic (ruffle-ended) to near-physiologic (smooth-ended) as mineral crystals slowly expand into the "spaces" (volume) formerly occupied by matrix proteins and water. Matrix proteins are processed and degraded by proteinases throughout amelogenesis, but they undergo more rapid destruction once ameloblast modulation begins. Ruffle-ended ameloblasts appear to function primarily as a regulatory and transport epithelium for controlling the movement of calcium and other ions such as bicarbonate into enamel to maintain buffering capacity and driving forces optimized for surface crystal growth. The reason ruffle-ended ameloblasts become smooth-ended periodically is unknown, although this event seems to be crucial for sustaining long-term crystal growth.


2012 ◽  
Vol 6 (5) ◽  
pp. 1141-1155 ◽  
Author(s):  
B. R. Pinzer ◽  
M. Schneebeli ◽  
T. U. Kaempfer

Abstract. Dry snow metamorphism under an external temperature gradient is the most common type of recrystallization of snow on the ground. The changes in snow microstructure modify the physical properties of snow, and therefore an understanding of this process is essential for many disciplines, from modeling the effects of snow on climate to assessing avalanche risk. We directly imaged the microstructural changes in snow during temperature gradient metamorphism (TGM) under a constant gradient of 50 K m−1, using in situ time-lapse X-ray micro-tomography. This novel and non-destructive technique directly reveals the amount of ice that sublimates and is deposited during metamorphism, in addition to the exact locations of these phase changes. We calculated the average time that an ice volume stayed in place before it sublimated and found a characteristic residence time of 2–3 days. This means that most of the ice changes its phase from solid to vapor and back many times in a seasonal snowpack where similar temperature conditions can be found. Consistent with such a short timescale, we observed a mass turnover of up to 60% of the total ice mass per day. The concept of hand-to-hand transport for the water vapor flux describes the observed changes very well. However, we did not find evidence for a macroscopic vapor diffusion enhancement. The picture of {temperature gradient metamorphism} produced by directly observing the changing microstructure sheds light on the micro-physical processes and could help to improve models that predict the physical properties of snow.


2013 ◽  
Vol 740-742 ◽  
pp. 77-80
Author(s):  
Jung Young Jung ◽  
Sang Il Lee ◽  
Mi Seon Park ◽  
Doe Hyung Lee ◽  
Hee Tae Lee ◽  
...  

The present research was focused to investigate the effect of internal crucible design that influenced the 4H-SiC crystal growth onto a 6H-SiC seed by PVT method. The crucible design was modified to produce a uniform radial temperature gradient in the growth cell. The seed attachment was also modified with a use of polycrystalline SiC plate. The crystal quality of 4H-SiC single crystals grown in modified crucible and grown with modified seed attachment was revealed to be better than that of crystal grown in conventional crucible. The full width at half maximum (FWHM) values of grown SiC crystals in the conventional crucible, the modified seed attachment and the modified crucible were 285 arcsec, 134 arcsec and 128 arcsec, respectively. The micropipe density (MPD) of grown SiC crystals in the conventional crucible, the modified seed attachment and the modified crucible were 101ea/cm^2, 81ea/cm^2 and 42ea/cm^2, respectively.


2021 ◽  
Author(s):  
Hongmei Ren ◽  
Ang Li ◽  
Pinhua Xie ◽  
Zhaokun Hu ◽  
Jin Xu ◽  
...  

<p>      Water vapor transport affects regional precipitation and climate change. The measurement of precipitable water and water vapor flux is of great significance to the study of precipitation and water vapor transport. In the study, a new method of computing the precipitable water and estimating the water vapor transport flux using multi-axis differential optical absorption spectroscopy (MAX-DOAS) were presented. The calculated precipitable water and water vapor flux were compared to the European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis data and the correlation coefficient of the precipitable water, the zonal and meridional water vapor flux and ECMWF are r≥0.92, r=0.77 and r≥0.89, respectively. The seasonal and diurnal climatologies of precipitable water and water vapor flux in the coastal (Qingdao) and inland (Xi’an) cities of China using this method were analyzed from June 1, 2019 to May 31, 2020. The results indicated that the seasonal and diurnal variation characteristics of the precipitable water in the two cities were similar. The zonal fluxes of the two cities were mainly transported from west to east, Qingdao's meridional flux was mainly transported to the south, and Xi'an was mainly transported to the north. The results also indicated that the water vapor flux transmitting belts appear near 2km and 1.4km above the surface in Qingdao and appeared around 2.8km, 1.6km and 1.0km in Xi'an. </p>


2021 ◽  
pp. 66-100
Author(s):  
Alexander N. Shvetsov

As an object of research in the article, the phenomenon of the Russian space, taken in a long historical retrospective, appears, the subject issues of the study of which are the prerequisites, meanings and content, as well as significant cause-and-effect relationships and the dynamics of its transformations. It is shown that the processes of acquisition and development (colonization) of the country’s space took many centuries, took place in different directions, with different intensity and were initially associated with special motives, extraordinary efforts and contradictory consequences. The cornerstones of the main stages of transformation of the Russian space — pre-revolutionary, Soviet and post-Soviet — are considered. A theoretical understanding of the modern stage is proposed, the deep meaning of which the author associates with the need to remove the main contradiction of the spatial organization of life in the country, due to the abrupt transition of the country «from socialism to the market». The driving forces and limitations of the formation of a new configuration of space are highlighted, the course and content of this transition process are predicted. In the author’s understanding, the ongoing transition is characterized by a complex interweaving of reforms and counter-reforms: the market-federative reversal of the 1990s (with its well-known excesses of reformation radicalism) is opposed by a mechanistic one that ignores the realities of the established market-capitalist system, and therefore counterproductive reproduction of a number of Soviet planning and placement algorithms of public administration. The conceptual approach to the consideration of the organization of the socio-economic space as a large complex dynamic open system and to the interpretation of its transformation processes as systemic transformations is substantiated. The deep Russian features of state participation in the transformation of the socio-economic space are revealed, the requirements for the current state regional policy are formulated.


2001 ◽  
Vol 229 (1-4) ◽  
pp. 6-10 ◽  
Author(s):  
Xinming Huang ◽  
Toshinori Taishi ◽  
Tiefeng Wang ◽  
Keigo Hoshikawa

2010 ◽  
Vol 645-648 ◽  
pp. 375-378 ◽  
Author(s):  
Valdas Jokubavicius ◽  
Justinas Palisaitis ◽  
Remigijus Vasiliauskas ◽  
Rositza Yakimova ◽  
Mikael Syväjärvi

Different sublimation growth conditions of 3C-SiC approaching a bulk process have been investigated with the focus on appearance of macrodefects. The growth rate of 3C-SiC crystals grown on 6H-SiC varied from 380 to 460 μm/h with the thickness of the crystals from 190 to 230 μm, respectively. The formation of macrodefects with void character was revealed at the early stage of 3C-SiC crystal growth. The highest concentration of macrodefects appears in the vicinity of the domain in samples grown under high temperature gradient and fastest temperature ramp up. The formation of macrodefects was related to carbon deficiency which appear due to high Si/C ratio which is used to enable formation of the 3C-SiC polytype.


2001 ◽  
Vol 692 ◽  
Author(s):  
K. Kodera ◽  
A. Kinoshita ◽  
K. Arafune ◽  
Y. Nakae ◽  
A. Hirata

AbstractIt is necessary to clarify the effect of Marangoni convection on single crystal growth from a melt in order to improve the quality of the grown crystal. Particularly, the deviation of crystalmelt (C-M) interface from a planar shape is a major problem because it may deteriorate the quality of the grown crystal. In this paper, we investigated the effect of thermal and solutal Marangoni convection on C-M interface shape in an In-Sb binary system by the horizontal Bridgman (HB) method. The C-M interface concavity strongly depends on the cooling rate and the temperature gradient under uniform concentration distribution conditions in the melt. A large concavity was observed at low cooling rates and high temperature gradient conditions. The concavity was found to be caused by thermal Marangoni convection, by taking Péclet number into account. Then, we varied the composition of the In-Sb binary system to induce solutal Marangoni convection intentionally. The C-M interface was kept planar in case solutal Marangoni convection occurred in the direction opposite to the thermal one. Therefore, we believe that the utilization of solutal Marangoni convection will be a new control technique to make the C-M interface planar for the HB system. From these results, it was clarified that Marangoni convection plays a significant role in the HB crystal growth system.


Sign in / Sign up

Export Citation Format

Share Document