scholarly journals TEMPORAL DYNAMICS OF BRAIN ACTIVATION DURING THREE CONCEPT GENERATION TECHNIQUES

2021 ◽  
Vol 1 ◽  
pp. 2961-2970
Author(s):  
Julie Milovanovic ◽  
Mo Hu ◽  
Tripp Shealy ◽  
John Gero

AbstractThe research presented in this paper explores features of temporal design neurocognition by comparing regions of activation in the brain during concept generation. A total of 27 engineering graduate students used brainstorming, morphological analysis, and TRIZ to generate concepts to design problems. Students' brain activation in their prefrontal cortex (PFC) was measured using functional near-infrared spectroscopy (fNIRS). Temporal activations were compared between techniques. When using brainstorming and morphological analysis, highly activated regions are consistently situated in the medial and right part of the PFC over time. For both techniques, the temporal neuro-physiological patterns are similar. Cognitive functions associated to the medial and right part of the PFC suggest an association with divergent thinking and adaptative decision making. In contrast, highly activated regions over time when using TRIZ appear in the medial or the left part of the prefrontal cortex, usually associated with goal directed planning.

2020 ◽  
Vol 6 ◽  
Author(s):  
Tripp Shealy ◽  
John Gero ◽  
Mo Hu ◽  
Julie Milovanovic

Abstract This paper presents the results of studying the brain activations of 30 engineering students when using three different design concept generation techniques: brainstorming, morphological analysis, and TRIZ. Changes in students’ brain activation in the prefrontal cortex were measured using functional near-infrared spectroscopy. The results are based on the area under the curve analysis of oxygenated hemodynamic response as well as an assessment of functional connectivity using Pearson’s correlation to compare students’ cognitive brain activations using these three different ideation techniques. The results indicate that brainstorming and morphological analysis demand more cognitive activation across the prefrontal cortex (PFC) compared to TRIZ. The highest cognitive activation when brainstorming and using morphological analysis is in the right dorsolateral PFC (DLPFC) and ventrolateral PFC. These regions are associated with divergent thinking and ill-defined problem-solving. TRIZ produces more cognitive activation in the left DLPFC. This region is associated with convergent thinking and making judgments. Morphological analysis and TRIZ also enable greater coordination (i.e., synchronized activation) between brain regions. These findings offer new evidence that structured techniques like TRIZ reduce cognitive activation, change patterns of activation and increase coordination between regions in the brain.


Healthcare ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 412
Author(s):  
Li Cong ◽  
Hideki Miyaguchi ◽  
Chinami Ishizuki

Evidence shows that second language (L2) learning affects cognitive function. Here in this work, we compared brain activation in native speakers of Mandarin (L1) who speak Japanese (L2) between and within two groups (high and low L2 ability) to determine the effect of L2 ability in L1 and L2 speaking tasks, and to map brain regions involved in both tasks. The brain activation during task performance was determined using prefrontal cortex blood flow as a proxy, measured by functional near-infrared spectroscopy (fNIRS). People with low L2 ability showed much more brain activation when speaking L2 than when speaking L1. People with high L2 ability showed high-level brain activation when speaking either L2 or L1. Almost the same high-level brain activation was observed in both ability groups when speaking L2. The high level of activation in people with high L2 ability when speaking either L2 or L1 suggested strong inhibition of the non-spoken language. A wider area of brain activation in people with low compared with high L2 ability when speaking L2 is considered to be attributed to the cognitive load involved in code-switching L1 to L2 with strong inhibition of L1 and the cognitive load involved in using L2.


Author(s):  
Paola Pinti ◽  
Andrea Devoto ◽  
Isobel Greenhalgh ◽  
Ilias Tachtsidis ◽  
Paul W Burgess ◽  
...  

Abstract Anterior prefrontal cortex (PFC, Brodmann area 10) activations are often, but not always, found in neuroimaging studies investigating deception, and the precise role of this area remains unclear. To explore the role of the PFC in face-to-face deception, we invited pairs of participants to play a card game involving lying and lie detection while we used functional near infrared spectroscopy (fNIRS) to record brain activity in the PFC. Participants could win points for successfully lying about the value of their cards or for detecting lies. We contrasted patterns of brain activation when the participants either told the truth or lied, when they were either forced into this or did so voluntarily and when they either succeeded or failed to detect a lie. Activation in the anterior PFC was found in both lie production and detection, unrelated to reward. Analysis of cross-brain activation patterns between participants identified areas of the PFC where the lead player’s brain activity synchronized their partner’s later brain activity. These results suggest that during situations that involve close interpersonal interaction, the anterior PFC supports processing widely involved in deception, possibly relating to the demands of monitoring one’s own and other people’s behaviour.


Author(s):  
Trinh Nguyen ◽  
Hanna Schleihauf ◽  
Ezgi Kayhan ◽  
Daniel Matthes ◽  
Pascal Vrtička ◽  
...  

Abstract Conversations are an essential form of communication in daily family life. Specific patterns of caregiver–child conversations have been linked to children’s socio-cognitive development and child-relationship quality beyond the immediate family environment. Recently, interpersonal neural synchronization has been proposed as a neural mechanism supporting conversation. Here, we present a functional near-infrared spectroscopy (fNIRS) hyperscanning study looking at the temporal dynamics of neural synchrony during mother–child conversation. Preschoolers (20 boys and 20 girls, M age 5;07 years) and their mothers (M age 36.37 years) were tested simultaneously with fNIRS hyperscanning while engaging in a free verbal conversation lasting for 4 min. Neural synchrony (using wavelet transform coherence analysis) was assessed over time. Furthermore, each conversational turn was coded for conversation patterns comprising turn-taking, relevance, contingency and intrusiveness. Results from linear mixed-effects modeling revealed that turn-taking, but not relevance, contingency or intrusiveness predicted neural synchronization during the conversation over time. Results are discussed to point out possible variables affecting parent–child conversation quality and the potential functional role of interpersonal neural synchronization for parent–child conversation.


2021 ◽  
Vol 21 (1) ◽  
pp. 36-42
Author(s):  
Shweta Shenoy ◽  
Prachi Khandekar ◽  
Abhinav Sathe

Several neuroimaging studies have examined the effect of different types and combinations of exercises on activation of brain associated with cognitive testing but none of these studies have examined the role of high intensity intermittent exercise (HIIE) in altering cortical activation from simple to complex cognitive tasks.  The purpose of this study was to find if HIIE has a role in modulating executive functions related to inhibitory control as expressed by changes in prefrontal cortex (PFC) activation.  Materials and methods. 40 healthy adults aged between 18-30 years volunteered for the study. They were randomly divided into HIIE a (n = 20) group and a control (n = 20) group. The HIIE group performed 4*4 min of high intensity exercise on a cycle ergometer with 3 minutes of active recovery at lower intensities between the bouts, whereas the control group performed no exercise. Prefrontal hemodynamics (oxy and deoxy haemoglobin) were assessed using functional near infrared spectroscopy (fNIRS) during the Colour Word Stroop test (CWST) on two sessions: pre-session and post-session (1 week after pre-session). Results. The results indicate a significant difference in CWST scores which coincided with a significant difference in hemodynamics of PFC between a congruent and a complex incongruent task in the HIIE group. There was a greater activation of the right frontopolar area, the left ventrolateral prefrontal cortex, and the left frontopolar area during the incongruent task in response to acute HIIE.  Conclusion. HIIE plays a role in changing brain activation during more complex interference related tasks.


Motor Control ◽  
2019 ◽  
Vol 23 (4) ◽  
pp. 498-517 ◽  
Author(s):  
Manuel E. Hernandez ◽  
Erin O’Donnell ◽  
Gioella Chaparro ◽  
Roee Holtzer ◽  
Meltem Izzetoglu ◽  
...  

Functional near-infrared spectroscopy was used to evaluate prefrontal cortex activation differences between older adults with multiple sclerosis (MS) and healthy older adults (HOA) during the performance of a balance- and attention-demanding motor task. Ten older adults with MS and 12 HOA underwent functional near-infrared spectroscopy recording while talking, virtual beam walking, or virtual beam walking while talking on a self-paced treadmill. The MS group demonstrated smaller increases in prefrontal cortex oxygenation levels than HOA during virtual beam walking while talking than talking tasks. These findings indicate a decreased ability to allocate additional attentional resources in challenging walking conditions among MS compared with HOA. This study is the first to investigate brain activation dynamics during the performance of balance- and attention-demanding motor tasks in persons with MS.


2019 ◽  
Author(s):  
Shannon Burns ◽  
Lianne N. Barnes ◽  
Ian A. McCulloh ◽  
Munqith M. Dagher ◽  
Emily B. Falk ◽  
...  

The large majority of social neuroscience research uses WEIRD populations – participants from Western, educated, industrialized, rich, and democratic locations. This makes it difficult to claim whether neuropsychological functions are universal or culture specific. In this study, we demonstrate one approach to addressing the imbalance by using portable neuroscience equipment in a study of persuasion conducted in Jordan with an Arabic-speaking sample. Participants were shown persuasive videos on various health and safety topics while their brain activity was measured using functional near infrared spectroscopy (fNIRS). Self-reported persuasiveness ratings for each video were then recorded. Consistent with previous research conducted with American subjects, this work found that activity in the dorsomedial and ventromedial prefrontal cortex predicted how persuasive participants found the videos and how much they intended to engage in the messages’ endorsed behaviors. Further, activity in the left ventrolateral prefrontal cortex was associated with persuasiveness ratings, but only in participants for whom the message was personally relevant. Implications for these results on the understanding of the brain basis of persuasion and on future directions for neuroimaging in diverse populations are discussed.


2021 ◽  
Vol 11 (6) ◽  
pp. 701
Author(s):  
Cheng-Hsuan Chen ◽  
Kuo-Kai Shyu ◽  
Cheng-Kai Lu ◽  
Chi-Wen Jao ◽  
Po-Lei Lee

The sense of smell is one of the most important organs in humans, and olfactory imaging can detect signals in the anterior orbital frontal lobe. This study assessed olfactory stimuli using support vector machines (SVMs) with signals from functional near-infrared spectroscopy (fNIRS) data obtained from the prefrontal cortex. These data included odor stimuli and air state, which triggered the hemodynamic response function (HRF), determined from variations in oxyhemoglobin (oxyHb) and deoxyhemoglobin (deoxyHb) levels; photoplethysmography (PPG) of two wavelengths (raw optical red and near-infrared data); and the ratios of data from two optical datasets. We adopted three SVM kernel functions (i.e., linear, quadratic, and cubic) to analyze signals and compare their performance with the HRF and PPG signals. The results revealed that oxyHb yielded the most efficient single-signal data with a quadratic kernel function, and a combination of HRF and PPG signals yielded the most efficient multi-signal data with the cubic function. Our results revealed superior SVM analysis of HRFs for classifying odor and air status using fNIRS data during olfaction in humans. Furthermore, the olfactory stimulation can be accurately classified by using quadratic and cubic kernel functions in SVM, even for an individual participant data set.


Sign in / Sign up

Export Citation Format

Share Document