scholarly journals Dietary long-chain inulin reduces abdominal fat but has no effect on bone density in growing female rats

2008 ◽  
Vol 100 (2) ◽  
pp. 451-459 ◽  
Author(s):  
Jennifer A. Jamieson ◽  
Natasha R. Ryz ◽  
Carla G. Taylor ◽  
Hope A. Weiler

New strategies to improve Ca absorption and bone health are needed to address the current state of osteoporosis prevention and management. Inulin-type fructans have shown great promise as a dietary intervention strategy, but have not yet been tested in a young female model. Our objective was to investigate the effect of long chain (LC) inulin on bone mineralization and density in growing, female rats, as well as the quality of growth. Weanling Sprague–Dawley rats were assigned to inulin or cellulose treatments for either 4 or 8 weeks. Growth was measured weekly and quality of growth assessed using fat pad weights and dual-energy X-ray absorptiometry (DXA). Whole body (WB) and selected regions were analysed for bone mineral density (BMD) and body composition by DXA. Serum markers of bone turnover were assessed by enzyme-linked immunosorbent assays. Ca and P concentrations were determined in excised femurs by inductively coupled plasma spectrometry. Feeding inulin resulted in 4 % higher femoral weight (adjusted for body weight) and 6 % less feed intake. Inulin did not affect WB or regional BMD, but was associated with a 28 % lower parametrial fat pad mass, 21 % less WB fat mass and 5 % less WB mass. In summary, LC-inulin lowered body fat mass, without consequence to bone density in growing female rats.

2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Danúbia da Cunha Sá-Caputo ◽  
Pedro Ronikeili-Costa ◽  
Rafaelle Pacheco Carvalho-Lima ◽  
Luciana Camargo Bernardo ◽  
Milena Oliveira Bravo-Monteiro ◽  
...  

Vibrations produced in oscillating/vibratory platform generate whole body vibration (WBV) exercises, which are important in sports, as well as in treating diseases, promoting rehabilitation, and improving the quality of life. WBV exercises relevantly increase the muscle strength, muscle power, and the bone mineral density, as well as improving the postural control, the balance, and the gait. An important number of publications are found in the PubMed database with the keyword “flexibility” and eight of the analyzed papers involving WBV and flexibility reached a level of evidence II. The biggest distance between the third finger of the hand to the floor (DBTFF) of a patient with metabolic syndrome (MS) was found before the first session and was considered to be 100%. The percentages to the other measurements in the different sessions were determined to be related to the 100%. It is possible to see an immediate improvement after each session with a decrease of the %DBTFF. As the presence of MS is associated with poorer physical performance, a simple and safe protocol using WBV exercises promoted an improvement of the flexibility in a patient with MS.


PEDIATRICS ◽  
1990 ◽  
Vol 86 (3) ◽  
pp. 440-447 ◽  
Author(s):  
Laura K. Bachrach ◽  
David Guido ◽  
Debra Katzman ◽  
Iris F. Litt ◽  
Robert Marcus

Osteoporosis develops in women with chronic anorexia nervosa. To determine whether bone mass is reduced in younger patients as well, bone density was studied in a group of adolescent patients with anorexia nervosa. With single- and dual-photon absorptiometry, a comparison was made of bone mineral density of midradius, lumbar spine, and whole body in 18 girls (12 to 20 years of age) with anorexia nervosa and 25 healthy control subjects of comparable age. Patients had significantly lower lumbar vertebral bone density than did control subjects (0.830 ± 0.140 vs 1.054 ± 0.139 g/cm2) and significantly lower whole body bone mass (0.700 ± 0.130 vs 0.955 ± 0.130 g/cm2). Midradius bone density was not significantly reduced. Of 18 patients, 12 had bone density greater than 2 standard deviations less than normal values for age. The diagnosis of anorexia nervosa had been made less than 1 year earlier for half of these girls. Body mass index correlated significantly with bone mass in girls who were not anorexic (P < .05, .005, and .0001 for lumbar, radius, and whole body, respectively). Bone mineral correlated significantly with body mass index in patients with anorexia nervosa as well. In addition, age at onset and duration of anorexia nervosa, but not calcium intake, activity level, or duration of amenorrhea correlated significantly with bone mineral density. It was concluded that important deficits of bone mass occur as a frequent and often early complication of anorexia nervosa in adolescence. Whole body is considerably more sensitive than midradius bone density as a measure of cortical bone loss in this illness. Low body mass index is an important predictor of this reduction in bone mass.


1992 ◽  
Vol 73 (3) ◽  
pp. 1165-1170 ◽  
Author(s):  
J. D. MacDougall ◽  
C. E. Webber ◽  
J. Martin ◽  
S. Ormerod ◽  
A. Chesley ◽  
...  

Our purpose was to investigate the relationship between running volume and bone mineral mass in adult male runners. Whole body and regional bone mineral density were determined by dual-photon absorptiometry in 22 sedentary controls and 53 runners who were selected according to their running mileage to fall into a 5- to 10-, 15- to 20-, 25- to 30-, 40- to 55-, or 60- to 75-mile/wk group. All groups were of similar age (20–45 yr) and nutritional status, as determined by 7-day food records. Regional sites for bone density measurements included the trunk, spine, pelvis, thighs, and lower legs. In addition, serum total testosterone was determined in each subject and computed tomography scans were made of the lower legs in 34 subjects to assess bone cross-sectional area. No significant differences were detected for bone density measurements with the exception of the lower legs where it was significantly (P less than 0.05) greater for the 15- to 20-mile/wk group than for the control and 5- to 10-mile/wk groups. With mileage greater than 20 miles/wk, bone density of the lower legs showed no further increase and, in fact, tended to decrease, so that for the 60- to 75-mile/wk group it was similar to that of the controls. Cross-sectional area of the tibia and fibula when normalized to body weight tended to be greater as weekly mileage increased and was significantly greater in the 40- to 55-mile/wk runners than in the control group.(ABSTRACT TRUNCATED AT 250 WORDS)


2017 ◽  
Vol 29 (4) ◽  
pp. 520-528 ◽  
Author(s):  
Ricardo Ribeiro Agostinete ◽  
Santiago Maillane-Vanegas ◽  
Kyle R. Lynch ◽  
Bruna Turi-Lynch ◽  
Manuel J. Coelho-e-Silva ◽  
...  

Purpose:To investigate the mediating effect of muscle mass on the relationship between training load and bone density in adolescent swimmers.Methods:A cross-sectional study involving 87 control and 22 swimmers aged 10–19 years (overall sample:n = 109). Swimmers had a minimum of 1 year of competition in regional and national championships, and control adolescents reported 1 year without any organized sport. Bone density was the main outcome (dual-energy X-ray absorptiometry), which was measured in upper limbs, lower limbs, spine, and whole body. Monthly training load was the independent variable, while the mediation effect of lean soft tissue was assessed. Maturity offset, age, inflammation, and vitamin D intake were treated as covariates.Results:Swimmers had lower bone density than controls; there was a significant and positive relationship between training load and muscle mass. In boys, training load presented a negative correlation with bone density in lower limbs [r = −.293; 95% confidence interval (CI), −.553 to −.034]. In girls, training load was negatively related to bone mineral density in lower limbs (r = .563; 95% CI, −.770 to −.356) and whole body (r = −.409; 95% CI, −.609 to −.209).Conclusion:Training load had a negative relationship on bone density of swimmers of both sexes, independently of the positive effect of lean soft tissue on bone density.


2007 ◽  
Vol 21 (5) ◽  
Author(s):  
Jennifer A Jamieson ◽  
Natasha R Ryz ◽  
Carla G Taylor ◽  
Hope A Weiler

2019 ◽  
Vol 149 (3) ◽  
pp. 479-487 ◽  
Author(s):  
Zahra Farahnak ◽  
Julia Lévy-Ndejuru ◽  
Paula Lavery ◽  
Hope A Weiler

ABSTRACT Background Docosahexaenoic acid (DHA; 22:6n–3) is an n–3 (ω-3) fatty acid known for beneficial effects on body composition. Objective The objective of the study was to test the dose response of lean and fat mass to DHA in healthy growing female rats. Methods Female Sprague-Dawley rats (7 wk at baseline; n = 12/diet) were randomly assigned to receive a control (AIN-93M; 60 g soybean oil/kg diet) or experimental diet for 10 wk. Experimental diets contained 0.1%, 0.4%, 0.8%, or 1.2% DHA (wt:wt of total diet). Imaging for whole-body and abdominal composition was conducted using dual-energy X-ray absorptiometry and microcomputed tomography, respectively, at weeks 0, 5, and 10. Fatty acid profiles of several tissues were analyzed using gas chromatography. Serum leptin, C-reactive protein, and plasma insulin-like growth factor I concentrations were measured at each time point using immunoassays. Data were tested using Pearson's correlations and mixed-model ANOVA. Results No differences were observed in weight at baseline or food intake throughout the study. Overall, a 6% increase (P < 0.05) in whole-body and abdominal lean mass was observed in the 0.4%-DHA diet group compared with the control diet group. Moreover, the abdominal visceral fat mass was 31.4% lower in rats in the 0.4%-DHA than in the 1.2%-DHA diet group (P < 0.001). Rats in the 1.2%-DHA diet group showed greater percent differences in whole-body (32.5% and 40.6% higher) and in abdominal (33.9% and 49.4% higher) fat mass relative to the 0.1%- and 0.4%-DHA diet groups, respectively (P < 0.01). Accordingly, serum leptin concentration was lower in the 0.1%-DHA (38.2%) and 0.4%-DHA (43.8%) diet groups (P < 0.01) than in the 1.2%-DHA diet group and positively related to whole-body fat mass (r = 0.91, P < 0.0001). Conclusion Dietary DHA at 0.4% of dietary weight effectively enhances lean mass and proportionally reduces fat mass in growing female rats.


2007 ◽  
Vol 293 (3) ◽  
pp. R1102-R1109 ◽  
Author(s):  
Stefany D. Primeaux ◽  
Melissa Tong ◽  
Gregory M. Holmes

The inability to maintain body weight within prescribed ranges occurs in a significant portion of the human spinal cord injury (SCI) population. Using a rodent model of long-term high thoracic (spinal level T3) spinal cord transection (TX), we aimed to identify derangements in body weight, body composition, plasma insulin, glucose tolerance, and metabolic function, as measured by uncoupling protein 1 (UCP1) expression in interscapular brown adipose tissue (IBAT). Sixteen weeks after SCI, body weights of injured female rats stabilized and were significantly lower than surgical control animals. At the same time point, SCI rats had a significantly lower whole body fat:lean tissue mass ratio than controls, as measured indirectly by NMR. Despite lower body weight and fat mass, the cumulative consumption of standard laboratory chow (4.0 kcal/g) and mean energy intake (kcal·day−1·100 g body wt−1) of chronic SCI rats was significantly more than controls. Glucose tolerance tests indicated a significant enhancement in glucose handling in 16-wk SCI rats, which were coupled with lower serum insulin levels. The post mortem weight of gonadal and retroperitoneal fat pads was significantly reduced after SCI and IBAT displayed significantly lower real-time PCR expression of UCP1 mRNA. The reduced fat mass and IBAT UCP1 mRNA expression are contraindicative of the cumulative caloric intake by the SCI rats. The prolonged postinjury loss of body weight, including fat mass, is not due to hypophagia but possibly to permanent changes in gastrointestinal transit and absorption, as well as whole body homeostatic mechanisms.


2006 ◽  
Vol 20 (4) ◽  
Author(s):  
Hope A Weiler ◽  
Andrew Wakefield ◽  
James D House ◽  
Malcolm Ogborn ◽  
Harold M Aukema

2021 ◽  
Vol 92 (3) ◽  
pp. 201-206
Author(s):  
Ann Tsung ◽  
Daniel Jupiter ◽  
John Jaquish ◽  
Jean Sibonga

BACKGROUND: Bone density loss affects astronauts in long-duration spaceflight. The OsteoStrong Company has shown increased hip (14.95%) and lumbar (16.6%) area bone mineral density (aBMD) after 6 mo of exercises with their loading devices. The devices were tested on one subject as a pilot study.CASE REPORT: The subject performed 15 min of osteogenic exercises weekly for 24 wk. Total and regional aBMD, BAP (bone formation biomarker), NTX (bone resorption biomarker), forces exerted on devices, and weekly maximum weights lifted were collected. The control data was the subjects own lifting records 1.5 yr prestudy. The subject increased forces exerted on the devices in the upper extremity (97%, 197 to 390 kg; 435 to 859 lb), lower extremity (43%, 767 to 1097 kg; 1690 to 2418 lb), and spinal compression (22%, 275 to 336 kg; 607 to 740 lb). The monthly strength gain rate increased for snatch (2.3 vs. 0.71 kg; 5 vs. 1.56 lb), clean and jerk (2.5 vs. 0.4 kg; 5.5 vs. 0.88 lb), back squat (3.74 vs. 0 kg; 8.25 vs. 0 lb), front squat (2.15 vs. 0.2 kg; 4.75 vs. 0.47 lb), and deadlift (3.97 vs. 1.09 kg; 8.75 vs. 2.4 lb). The BAP increased by 39% (10.4 to 14.5 4 ug L1) and NTX decreased by 41% (13.4 to 7 nmol L1 BME). aBMD increased in the head (6%), arms (4.3%), trunk (6.3%), ribs (3.8%), and pelvis (11%). There were no differences in body weight, legs, spine, and whole-body aBMD on the full-body dual-energy X-ray absorptiometry (DXA). There were no differences in lumbar, hip, and femoral neck aBMD on the regional DXA.DISCUSSION: The osteogenic loading apparatus used for 15 min weekly increased strength for the one individual in this preliminary study. Future studies on astronauts and other healthy populations are necessary.Tsung A, Jupiter D, Jaquish J, Sibonga J. Weekly bone loading exercise effects on a healthy subjects strength, bone density, and bone biomarkers. Aerosp Med Hum Perform. 2021;92(3):201206.


Sign in / Sign up

Export Citation Format

Share Document