scholarly journals Identification of intra- and inter-individual metabolite variation in plasma metabolite profiles of cats and dogs

2011 ◽  
Vol 106 (S1) ◽  
pp. S146-S149 ◽  
Author(s):  
Alison Colyer ◽  
Matthew S. Gilham ◽  
Beate Kamlage ◽  
Dietrich Rein ◽  
David Allaway

The purpose of the present study was first to identify drivers of variance in plasma metabolite profiles of cats and dogs that may affect the interpretation of nutritional metabolomic studies. A total of fourteen cats and fourteen dogs housed in environmentally enriched accommodation were fed a single batch of diet to maintain body weight. Fasting blood samples were taken on days 14, 16 and 18 of the study. Gas chromatography–mass spectrometry (GC–MS), liquid chromatography (LC)–MS/MS and solid-phase extraction–LC–MS/MS analyses were used for metabolite profiling. Principal component (PC) analysis that indicated 31 and 27 % of the variance was explained in PC1 and PC2 for cats and dogs, respectively, with most individuals occupying a unique space. As the individual was a major driver of variance in the plasma metabolome, the second objective was to identify metabolites associated with the individual variation observed. The proportion of intra- and inter-individual variance was calculated for 109 cat and 101 dog metabolites with a low intra-individual variance (sd< 0·05). Of these, fifteen cat and six dog metabolites had inter-individual variance accounting for at least 90 % of the total variance. There were four metabolites common to both species (campesterol, DHA, a cholestenol and a sphingosine moiety). Many of the metabolites with >75 % inter-individual variance were common to both species and to similar areas of metabolism. In summary, the individual is an important driver of variance in the fasted plasma metabolome, and specific metabolites and areas of metabolism may be differentially regulated by individuals in two companion animal species.

Foods ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2516
Author(s):  
Sang-Hee Lee ◽  
Sunmin Lee ◽  
Seung-Hwa Lee ◽  
Hae-Jin Kim ◽  
Digar Singh ◽  
...  

Though varying metabolomes are believed to influence distinctive characteristics of different soy foods, an in-depth, comprehensive analysis of both soluble and volatile metabolites is largely unreported. The metabolite profiles of different soy products, including cheonggukjang, meju, doenjang, and raw soybean, were characterized using LC-MS (liquid chromatography–mass spectrometry), GC-MS (gas chromatography–mass spectrometry), and headspace solid-phase microextraction (HS-SPME) GC-MS. Principal component analysis (PCA) showed that the datasets for the cheonggukjang, meju, and doenjang extracts were distinguished from the non-fermented soybean across PC1, while those for cheonggukjang and doenjang were separated across PC2. Volatile organic compound (VOC) profiles were clearly distinct among doenjang and soybean, cheonggukjang, and meju samples. Notably, the relative contents of the isoflavone glycosides and DDMP (2,3-dihydro-2,5-dihydroxy-6-methyl-4H-pyran-4-one) conjugated soyasaponins were higher in soybean and cheonggukjang, compared to doenjang, while the isoflavone aglycones, non-DDMP conjugated soyasaponins, and amino acids were significantly higher in doenjang. Most VOCs, including the sulfur containing compounds aldehydes, esters, and furans, were relatively abundant in doenjang. However, pyrazines, 3-methylbutanoic acid, maltol, and methoxyphenol were higher in cheonggukjang, which contributed to the characteristic aroma of soy foods. We believe that this study provides the fundamental insights on soy food metabolomes, which determine their nutritional, functional, organoleptic, and aroma characteristics.


2021 ◽  
Vol 11 (13) ◽  
pp. 5855
Author(s):  
Samantha Reale ◽  
Valter Di Cecco ◽  
Francesca Di Donato ◽  
Luciano Di Martino ◽  
Aurelio Manzi ◽  
...  

Celery (Apium graveolens L.) is a vegetable belonging to the Apiaceae family that is widely used for its distinct flavor and contains a variety of bioactive metabolites with healthy properties. Some celery ecotypes cultivated in specific territories of Italy have recently attracted the attention of consumers and scientists because of their peculiar sensorial and nutritional properties. In this work, the volatile profiles of white celery “Sedano Bianco di Sperlonga” Protected Geographical Indication (PGI) ecotype, black celery “Sedano Nero di Torricella Peligna” and wild-type celery were investigated using head-space solid-phase microextraction combined with gas-chromatography/mass spectrometry (HS-SPME/GC-MS) and compared to that of the common ribbed celery. Exploratory multivariate statistical analyses were conducted using principal component analysis (PCA) on HS-SPME/GC-MS patterns, separately collected from celery leaves and petioles, to assess similarity/dissimilarity in the flavor composition of the investigated varieties. PCA revealed a clear differentiation of wild-type celery from the cultivated varieties. Among the cultivated varieties, black celery “Sedano Nero di Torricella Peligna” exhibited a significantly different composition in volatile profile in both leaves and petioles compared to the white celery and the prevalent commercial variety. The chemical components of aroma, potentially useful for the classification of celery according to the variety/origin, were identified.


Foods ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1180
Author(s):  
Xiaoyu Yin ◽  
Qian Chen ◽  
Qian Liu ◽  
Yan Wang ◽  
Baohua Kong

Smoking is mainly used to impart desirable flavour, colour and texture to the products. Various food smoking methods can be divided into traditional and industrial methods. The influences of three different smoking methods, including traditional smouldering smoke (TSS), industrial smouldering smoke (ISS) and industrial liquid smoke (ILS), on quality characteristics, sensory attributes and flavour profiles of Harbin red sausages were studied. The smoking methods had significant effects on the moisture content (55.74–61.72 g/100 g), L*-value (53.85–57.61), a*-value (11.97–13.15), b*-value (12.19–12.92), hardness (24.25–29.17 N) and chewiness (13.42–17.32). A total of 86 volatile compounds were identified by headspace solid phase microextraction combined with comprehensive two-dimensional gas chromatography mass spectrometry (GC × GC-qMS). Among them, phenolic compounds were the most abundant compounds in the all sausages. Compared with sausages smoked with smouldering smoke, the ILS sausages showed the highest content of volatile compounds, especially phenols, alcohols, aldehydes and ketones. Principal component analysis showed that the sausages smoked with different methods had a good separation based on the quality characteristics and GC × GC-qMS data. These results will facilitate optimising the smoking methods in the industrial production of smoked meat products.


Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2604
Author(s):  
Zhulin Wang ◽  
Rong Dou ◽  
Ruili Yang ◽  
Kun Cai ◽  
Congfa Li ◽  
...  

The change in phenols, polysaccharides and volatile profiles of noni juice from laboratory- and factory-scale fermentation was analyzed during a 63-day fermentation process. The phenol and polysaccharide contents and aroma characteristics clearly changed according to fermentation scale and time conditions. The flavonoid content in noni juice gradually increased with fermentation. Seventy-three volatile compounds were identified by solid-phase microextraction coupled with gas chromatography–mass spectrometry (SPME-GC-MS). Methyl hexanoate, 3-methyl-3-buten-1-ol, octanoic acid, hexanoic acid and 2-heptanone were found to be the main aroma components of fresh and fermented noni juice. A decrease in octanoic acid and hexanoic acid contents resulted in the less pungent aroma in noni juice from factory-scale fermentation. The results of principal component analysis of the electronic nose suggested that the difference in nitrogen oxide, alkanes, alcohols, and aromatic and sulfur compounds, contributed to the discrimination of noni juice from different fermentation times and scales.


Foods ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 801
Author(s):  
Kornelia Kaczmarska ◽  
Matthew Taylor ◽  
Udayasika Piyasiri ◽  
Damian Frank

Demand for plant-based proteins and plant-based food products is increasing globally. This trend is driven mainly by global population growth and a consumer shift towards more sustainable and healthier diets. Existing plant-based protein foods and meat mimetics often possess undesirable flavor and sensory properties and there is a need to better understand the formation of desirable meat-like flavors from plant precursors to improve acceptance of novel high-protein plant foods. This study aimed to comprehensively characterize the non-volatile flavor metabolites and the volatiles generated in grilled meat (beef, chicken, and pork) and compare these to commercially available meat substitutes and traditional high-protein plant-based foods (natto, tempeh, and tofu). Solid phase microextraction with gas-chromatography mass-spectrometry was used for elucidation of the flavor volatilome. Untargeted characterization of the non-volatile metabolome was conducted using Orbitrap mass spectrometry and Compound DiscovererTM datamining software. The study revealed greater diversity and higher concentrations of flavor volatiles in plant-based foods in comparison to grilled meat, although the odor activity of specific volatiles was not considered. On average, the total amount of volatiles in plant-based products were higher than in meat. A range of concentrations of free amino acids, dipeptide, tripeptides, tetrapeptides, nucleotides, flavonoids, and other metabolites was identified in meat and plant-based foods.


Marine Drugs ◽  
2021 ◽  
Vol 19 (4) ◽  
pp. 192
Author(s):  
Pengrui Wang ◽  
Jiapeng Chen ◽  
Lujing Chen ◽  
Li Shi ◽  
Hongbing Liu

Plant volatile organic compounds (VOCs) represent a relatively wide class of secondary metabolites. The VOC profiles of seven seaweeds (Grateloupia filicina, Polysiphonia senticulosa, Callithamnion corymbosum, Sargassum thunbergii, Dictyota dichotoma, Enteromorpha prolifera and Ulva lactuca) from the Yellow Sea of China were investigated using multifiber headspace solid phase microextraction coupled with gas chromatography–mass spectrometry (HS-SPME/GC–MS), among them, the VOCs of three red algae Grateloupia filicina, Polysiphonia senticulosa, and Callithamnion corymbosum were first reported. Principal component analysis (PCA) was used to disclose characteristic categories and molecules of VOCs and network pharmacology was performed to predict potential biomedical utilization of candidate seaweeds. Aldehyde was found to be the most abundant VOC category in the present study and (E)-β-ionone was the only compound found to exist in all seven seaweeds. The chemical diversity of aldehydes in E. prolifera suggest its potential application in chemotaxonomy and hinted that divinylbenzene/carboxen/polydimethylsiloxane (DVB/CAR/PDMS) fiber is more suitable for aldehyde extraction. VOCs in D. dichotoma were characterized as sesquiterpenes and diterpenes and the most relevant pharmacological pathway was the neuroactive ligand–receptor interaction pathway, which suggests that D. dichotoma may have certain preventive and therapeutic values in cancer, especially in lung cancer, in addition to neuropsychiatric diseases.


2009 ◽  
Vol 150 (19) ◽  
pp. 903-907 ◽  
Author(s):  
Mária Mátyus ◽  
István Horváth ◽  
János Fehér ◽  
Róbert Farkas ◽  
Veronika Wolf ◽  
...  

The purpose of this study was to examine the effect of Guardian Angel powder (GA) on the blood alcohol level. According to the experimental protocol, two sets of measurement were performed: modeling the eating and drinking habit of a typical family or social meeting, alcohol containing drinks corresponding to 70 g of pure alcohol and copious amount of food were consumed first without GA powder, then with GA powder. In the latter case GA powder was dissolved in water and one dose was taken before eating, the other one was consumed during eating. Blood samples were hourly collected from the volunteers in both sets for four hours. The measurement of blood alcohol level was performed by gas chromatography-mass spectrometry method proceeding to Solid Phase Micro Extraction (SPME). Our results show that the blood alcohol level decreased significantly when two doses of GA powder were consumed. After two hours of taking GA powder, the blood alcohol level was significantly lower in each volunteers compared to their own blood alcohol level measured in the absence of GA powder. This result shows that the individual variation of the alcohol metabolism does not influence significantly the effect of GA powder. Further studies are needed to investigate the detailed mechanism of the action of GA powder to find out whether GA powder influences the absorption of alcohol or/and the metabolism of alcohol.


2022 ◽  
Vol 1 ◽  
Author(s):  
Kirsten Nettles ◽  
Cameron Ford ◽  
Paola A. Prada-Tiedemann

The early detection and location of firearm threats is critical to the success of any law enforcement operation to prevent a mass shooting event or illegal transport of weapons. Prevention tactics such as firearm detection canines have been at the front line of security tools to combat this national security threat. Firearm detection canines go through rigorous training regimens to achieve reliability in the detection of firearms as their target odor source. Currently, there is no scientific foundation as to the chemical odor signature emitted from the actual firearm device that could aid in increased and more efficient canine training and performance protocols or a better understanding of the chemistry of firearm-related odorants for better source identification. This study provides a novel method application of solid phase microextraction-gas chromatography-mass spectrometry (SPME-GC-MS) as a rapid system for the evaluation of odor profiles from firearm devices (loaded and unloaded). Samples included magazines (n = 30) and firearms (n = 15) acquired from the local law enforcement shooting range. Headspace analysis depicted five frequently occurring compounds across sample matrices including aldehydes such as nonanal, decanal, octanal and hydrocarbons tetradecane and tridecane. Statistical analysis via principal component analysis (PCA) highlighted a preliminary clustering differentiating unloaded firearms from both loaded/unloaded magazines and loaded firearm devices. These results highlight potential odor signature differences associated with different firearm components. The understanding of key odorants above a firearm will have an impact on national security efforts, thereby enhancing training regimens to better prepare canine teams for current threats in our communities.


Molecules ◽  
2019 ◽  
Vol 24 (3) ◽  
pp. 536 ◽  
Author(s):  
Somchai Rice ◽  
Devin Maurer ◽  
Anne Fennell ◽  
Murlidhar Dharmadhikari ◽  
Jacek Koziel

In this research, we propose a novel concept for a non-destructive evaluation of volatiles emitted from ripening grapes using solid-phase microextraction (SPME). This concept is novel to both the traditional vinifera grapes and the cold-hardy cultivars. Our sample models are cold-hardy varieties in the upper Midwest for which many of the basic multiyear grape flavor and wine style data is needed. Non-destructive sampling included a use of polyvinyl fluoride (PVF) chambers temporarily enclosing and concentrating volatiles emitted by a whole cluster of grapes on a vine and a modified 2 mL glass vial for a vacuum-assisted sampling of volatiles from a single grape berry. We used SPME for either sampling in the field or headspace of crushed grapes in the lab and followed with analyses on gas chromatography-mass spectrometry (GC-MS). We have shown that it is feasible to detect volatile organic compounds (VOCs) emitted in-vivo from single grape berries (39 compounds) and whole clusters (44 compounds). Over 110 VOCs were released to headspace from crushed berries. Spatial (vineyard location) and temporal variations in VOC profiles were observed for all four cultivars. However, these changes were not consistent by growing season, by location, within cultivars, or by ripening stage when analyzed by multivariate analyses such as principal component analysis (PCA) and hierarchical cluster analyses (HCA). Research into aroma compounds present in cold-hardy cultivars is essential to the continued growth of the wine industry in cold climates and diversification of agriculture in the upper Midwestern area of the U.S.


Foods ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 886 ◽  
Author(s):  
Angélica Romero-Medina ◽  
Mirna Estarrón-Espinosa ◽  
José Ramón Verde-Calvo ◽  
Maud Lelièvre-Desmas ◽  
Héctor B. Escalona-Buendía

This study was undertaken to explore how the use of pigmented corn as brewing ingredient influences the sensory profile of craft beers, by using both sensory and chemical analyses. Six pigmented corn and barley beers were brewed and then analysed to obtain their sensory characteristics, volatile composition and non-volatile (alcohol, bitterness, anthocyanins and polyphenol content) composition. ANOVAs, Principal Component Analysis (PCA) and Multiple Factor Analysis (MFA) were used to visualise these data for exploring the differences between beers based on the type of malt and to characterise corn beers considering the relationships between their sensory characteristics and their chemical parameters. The sensory attributes such as fermented fruits, cooked vegetables, tortillas, bread, dried fruits and dried chili characterised beers made 100% with pigmented corn. Over 100 volatiles were identified by head space-solid phase micro-extraction coupled with gas chromatography-mass spectrometry (HS-SPME/GC-MS). Among them, phenols and terpenes were the groups of volatiles that better characterised beers containing corn. The content of anthocyanins in corn beers provide the ‘amber-red-cooper’ colours in beers and may prevent the development of off-aromas and tastes. The use of pigmented corn seems to be a good option to renew the traditional ‘Sendechó’ while preserving some of its sensory attributes.


Sign in / Sign up

Export Citation Format

Share Document