scholarly journals Development of Profiling Methods for Contraband Firearm Volatile Odor Signatures

2022 ◽  
Vol 1 ◽  
Author(s):  
Kirsten Nettles ◽  
Cameron Ford ◽  
Paola A. Prada-Tiedemann

The early detection and location of firearm threats is critical to the success of any law enforcement operation to prevent a mass shooting event or illegal transport of weapons. Prevention tactics such as firearm detection canines have been at the front line of security tools to combat this national security threat. Firearm detection canines go through rigorous training regimens to achieve reliability in the detection of firearms as their target odor source. Currently, there is no scientific foundation as to the chemical odor signature emitted from the actual firearm device that could aid in increased and more efficient canine training and performance protocols or a better understanding of the chemistry of firearm-related odorants for better source identification. This study provides a novel method application of solid phase microextraction-gas chromatography-mass spectrometry (SPME-GC-MS) as a rapid system for the evaluation of odor profiles from firearm devices (loaded and unloaded). Samples included magazines (n = 30) and firearms (n = 15) acquired from the local law enforcement shooting range. Headspace analysis depicted five frequently occurring compounds across sample matrices including aldehydes such as nonanal, decanal, octanal and hydrocarbons tetradecane and tridecane. Statistical analysis via principal component analysis (PCA) highlighted a preliminary clustering differentiating unloaded firearms from both loaded/unloaded magazines and loaded firearm devices. These results highlight potential odor signature differences associated with different firearm components. The understanding of key odorants above a firearm will have an impact on national security efforts, thereby enhancing training regimens to better prepare canine teams for current threats in our communities.

2021 ◽  
Vol 11 (21) ◽  
pp. 9964
Author(s):  
Ylenia Pieracci ◽  
Roberta Ascrizzi ◽  
Luisa Pistelli ◽  
Guido Flamini

As it mimics olfactory perception, headspace analysis is frequently used for examination of products like chocolate, in which aroma is a key feature. Chemical analysis by itself, however, only provides half the picture, as final consumer’s perception cannot be compared to that of a Gas Chromatography-Mass Spectrometry (GC-MS) port, but rather to a panel test assessment. The aim of the present study was the evaluation of combined chemical (by means of headspace solid-phase microextraction and GC-MS) and panel test data (by means of a sensory evaluation operated by 6 untrained panelists) obtained for 24 dark chocolate bars to assess whether these can discriminate between bars from different brands belonging to different commercial segments (hard discount, HD; supermarket, SM; organic bars, BIO). In all samples, with the only exception of one supermarket bar (in which esters exhibited the highest relative abundance), pyrazines were detected as the most abundant chemical class (HD: 56.3–74.2%; BIO: 52.0–76.4%; SM: 31.2–88.9%). Non-terpene alcohols, aldehydes, and esters followed as quantitatively relevant groups of compounds. The obtained data was then subjected to hierarchical cluster (HCA) and principal component (PCA) analysis. The statistical distribution of samples obtained for the chemical data did not match that obtained with panelists’ sensorial data. Moreover, although an overall ability of grouping samples of the same commercial origin was evidenced for hard discount and supermarket bars, no sharp grouping was possible.


2021 ◽  
Vol 11 (13) ◽  
pp. 5855
Author(s):  
Samantha Reale ◽  
Valter Di Cecco ◽  
Francesca Di Donato ◽  
Luciano Di Martino ◽  
Aurelio Manzi ◽  
...  

Celery (Apium graveolens L.) is a vegetable belonging to the Apiaceae family that is widely used for its distinct flavor and contains a variety of bioactive metabolites with healthy properties. Some celery ecotypes cultivated in specific territories of Italy have recently attracted the attention of consumers and scientists because of their peculiar sensorial and nutritional properties. In this work, the volatile profiles of white celery “Sedano Bianco di Sperlonga” Protected Geographical Indication (PGI) ecotype, black celery “Sedano Nero di Torricella Peligna” and wild-type celery were investigated using head-space solid-phase microextraction combined with gas-chromatography/mass spectrometry (HS-SPME/GC-MS) and compared to that of the common ribbed celery. Exploratory multivariate statistical analyses were conducted using principal component analysis (PCA) on HS-SPME/GC-MS patterns, separately collected from celery leaves and petioles, to assess similarity/dissimilarity in the flavor composition of the investigated varieties. PCA revealed a clear differentiation of wild-type celery from the cultivated varieties. Among the cultivated varieties, black celery “Sedano Nero di Torricella Peligna” exhibited a significantly different composition in volatile profile in both leaves and petioles compared to the white celery and the prevalent commercial variety. The chemical components of aroma, potentially useful for the classification of celery according to the variety/origin, were identified.


Foods ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1180
Author(s):  
Xiaoyu Yin ◽  
Qian Chen ◽  
Qian Liu ◽  
Yan Wang ◽  
Baohua Kong

Smoking is mainly used to impart desirable flavour, colour and texture to the products. Various food smoking methods can be divided into traditional and industrial methods. The influences of three different smoking methods, including traditional smouldering smoke (TSS), industrial smouldering smoke (ISS) and industrial liquid smoke (ILS), on quality characteristics, sensory attributes and flavour profiles of Harbin red sausages were studied. The smoking methods had significant effects on the moisture content (55.74–61.72 g/100 g), L*-value (53.85–57.61), a*-value (11.97–13.15), b*-value (12.19–12.92), hardness (24.25–29.17 N) and chewiness (13.42–17.32). A total of 86 volatile compounds were identified by headspace solid phase microextraction combined with comprehensive two-dimensional gas chromatography mass spectrometry (GC × GC-qMS). Among them, phenolic compounds were the most abundant compounds in the all sausages. Compared with sausages smoked with smouldering smoke, the ILS sausages showed the highest content of volatile compounds, especially phenols, alcohols, aldehydes and ketones. Principal component analysis showed that the sausages smoked with different methods had a good separation based on the quality characteristics and GC × GC-qMS data. These results will facilitate optimising the smoking methods in the industrial production of smoked meat products.


Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2604
Author(s):  
Zhulin Wang ◽  
Rong Dou ◽  
Ruili Yang ◽  
Kun Cai ◽  
Congfa Li ◽  
...  

The change in phenols, polysaccharides and volatile profiles of noni juice from laboratory- and factory-scale fermentation was analyzed during a 63-day fermentation process. The phenol and polysaccharide contents and aroma characteristics clearly changed according to fermentation scale and time conditions. The flavonoid content in noni juice gradually increased with fermentation. Seventy-three volatile compounds were identified by solid-phase microextraction coupled with gas chromatography–mass spectrometry (SPME-GC-MS). Methyl hexanoate, 3-methyl-3-buten-1-ol, octanoic acid, hexanoic acid and 2-heptanone were found to be the main aroma components of fresh and fermented noni juice. A decrease in octanoic acid and hexanoic acid contents resulted in the less pungent aroma in noni juice from factory-scale fermentation. The results of principal component analysis of the electronic nose suggested that the difference in nitrogen oxide, alkanes, alcohols, and aromatic and sulfur compounds, contributed to the discrimination of noni juice from different fermentation times and scales.


Marine Drugs ◽  
2021 ◽  
Vol 19 (4) ◽  
pp. 192
Author(s):  
Pengrui Wang ◽  
Jiapeng Chen ◽  
Lujing Chen ◽  
Li Shi ◽  
Hongbing Liu

Plant volatile organic compounds (VOCs) represent a relatively wide class of secondary metabolites. The VOC profiles of seven seaweeds (Grateloupia filicina, Polysiphonia senticulosa, Callithamnion corymbosum, Sargassum thunbergii, Dictyota dichotoma, Enteromorpha prolifera and Ulva lactuca) from the Yellow Sea of China were investigated using multifiber headspace solid phase microextraction coupled with gas chromatography–mass spectrometry (HS-SPME/GC–MS), among them, the VOCs of three red algae Grateloupia filicina, Polysiphonia senticulosa, and Callithamnion corymbosum were first reported. Principal component analysis (PCA) was used to disclose characteristic categories and molecules of VOCs and network pharmacology was performed to predict potential biomedical utilization of candidate seaweeds. Aldehyde was found to be the most abundant VOC category in the present study and (E)-β-ionone was the only compound found to exist in all seven seaweeds. The chemical diversity of aldehydes in E. prolifera suggest its potential application in chemotaxonomy and hinted that divinylbenzene/carboxen/polydimethylsiloxane (DVB/CAR/PDMS) fiber is more suitable for aldehyde extraction. VOCs in D. dichotoma were characterized as sesquiterpenes and diterpenes and the most relevant pharmacological pathway was the neuroactive ligand–receptor interaction pathway, which suggests that D. dichotoma may have certain preventive and therapeutic values in cancer, especially in lung cancer, in addition to neuropsychiatric diseases.


Molecules ◽  
2019 ◽  
Vol 24 (3) ◽  
pp. 536 ◽  
Author(s):  
Somchai Rice ◽  
Devin Maurer ◽  
Anne Fennell ◽  
Murlidhar Dharmadhikari ◽  
Jacek Koziel

In this research, we propose a novel concept for a non-destructive evaluation of volatiles emitted from ripening grapes using solid-phase microextraction (SPME). This concept is novel to both the traditional vinifera grapes and the cold-hardy cultivars. Our sample models are cold-hardy varieties in the upper Midwest for which many of the basic multiyear grape flavor and wine style data is needed. Non-destructive sampling included a use of polyvinyl fluoride (PVF) chambers temporarily enclosing and concentrating volatiles emitted by a whole cluster of grapes on a vine and a modified 2 mL glass vial for a vacuum-assisted sampling of volatiles from a single grape berry. We used SPME for either sampling in the field or headspace of crushed grapes in the lab and followed with analyses on gas chromatography-mass spectrometry (GC-MS). We have shown that it is feasible to detect volatile organic compounds (VOCs) emitted in-vivo from single grape berries (39 compounds) and whole clusters (44 compounds). Over 110 VOCs were released to headspace from crushed berries. Spatial (vineyard location) and temporal variations in VOC profiles were observed for all four cultivars. However, these changes were not consistent by growing season, by location, within cultivars, or by ripening stage when analyzed by multivariate analyses such as principal component analysis (PCA) and hierarchical cluster analyses (HCA). Research into aroma compounds present in cold-hardy cultivars is essential to the continued growth of the wine industry in cold climates and diversification of agriculture in the upper Midwestern area of the U.S.


Foods ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 886 ◽  
Author(s):  
Angélica Romero-Medina ◽  
Mirna Estarrón-Espinosa ◽  
José Ramón Verde-Calvo ◽  
Maud Lelièvre-Desmas ◽  
Héctor B. Escalona-Buendía

This study was undertaken to explore how the use of pigmented corn as brewing ingredient influences the sensory profile of craft beers, by using both sensory and chemical analyses. Six pigmented corn and barley beers were brewed and then analysed to obtain their sensory characteristics, volatile composition and non-volatile (alcohol, bitterness, anthocyanins and polyphenol content) composition. ANOVAs, Principal Component Analysis (PCA) and Multiple Factor Analysis (MFA) were used to visualise these data for exploring the differences between beers based on the type of malt and to characterise corn beers considering the relationships between their sensory characteristics and their chemical parameters. The sensory attributes such as fermented fruits, cooked vegetables, tortillas, bread, dried fruits and dried chili characterised beers made 100% with pigmented corn. Over 100 volatiles were identified by head space-solid phase micro-extraction coupled with gas chromatography-mass spectrometry (HS-SPME/GC-MS). Among them, phenols and terpenes were the groups of volatiles that better characterised beers containing corn. The content of anthocyanins in corn beers provide the ‘amber-red-cooper’ colours in beers and may prevent the development of off-aromas and tastes. The use of pigmented corn seems to be a good option to renew the traditional ‘Sendechó’ while preserving some of its sensory attributes.


Biomolecules ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 896
Author(s):  
Emili Besalú ◽  
Chantal Prat ◽  
Enriqueta Anticó

This study describes a new chemometric tool for the identification of relevant volatile compounds in cork by untargeted headspace solid phase microextraction and gas chromatography mass spectrometry (HS-SPME/GC-MS) analysis. The production process in cork industries commonly includes a washing procedure based on water and temperature cycles in order to reduce off-flavors and decrease the amount of trichloroanisole (TCA) in cork samples. The treatment has been demonstrated to be effective for the designed purpose, but chemical changes in the volatile fraction of the cork sample are produced, which need to be further investigated through the chemometric examination of data obtained from the headspace. Ordinary principal component analysis (PCA) based on the numerical description provided by the chromatographic area of several target compounds was inconclusive. This led us to consider a new tool, which is presented here for the first time for an application in the chromatographic field. The superposing significant interaction rules (SSIR) method is a variable selector which directly analyses the raw internal data coming from the spectrophotometer software and, combined with PCA and discriminant analysis, has been able to separate a group of 56 cork samples into two groups: treated and non-treated. This procedure revealed the presence of two compounds, furfural and 5-methylfurfural, which are increased in the case of treated samples. These compounds explain the sweet notes found in the sensory evaluation of the treated corks. The model that is obtained is robust; the overall sensitivity and specificity are 96% and 100%, respectively. Furthermore, a leave-one-out cross-validation calculation revealed that all of the samples can be correctly classified one at a time if three or more PCA descriptors are considered.


2020 ◽  
Vol 16 (1-2) ◽  
Author(s):  
Hui Zhang ◽  
Jing Peng ◽  
Yu-ren Zhang ◽  
Qiang Liu ◽  
Lei-qing Pan ◽  
...  

AbstractThis study aimed to investigate the potential of electronic nose (E-nose) to differentiate volatiles of shiitakes produced at different drying stages. Shiitakes at different drying time slots were categorized into four groups (fresh, early, middle and late stage) by sensory evaluation. E-nose was used to analyze the volatiles and compared with headspace solid phase micro-extraction combined with gas chromatography-mass spectrometry (HS/GC-MS). The principal component analysis results showed that shiitakes at each stage could be successfully discriminated by E-nose and HS/GC-MS. The differences in volatile organic compounds produced at each stage were mainly caused by sulfurs and alcohols, leading to apparent changes of sensors sensitive to sulfurs, alcohols and aromatic compounds. The discriminant models were established by partial least squares discriminant analysis and support vector machine classification, with accuracy rates of 91.25 % and 95.83 %, respectively. The results demonstrated the potential use of E-nose in classifying and monitoring shiitakes during drying process.


Molecules ◽  
2019 ◽  
Vol 24 (9) ◽  
pp. 1773 ◽  
Author(s):  
Yuan Yuan ◽  
Ye Sun ◽  
Yanchun Zhao ◽  
Chungui Liu ◽  
Xiulan Chen ◽  
...  

Bearded irises are ornamental plants with distinctive floral fragrance grown worldwide. To identify the floral scent profiles, twenty-seven accessions derived from three bearded iris, including Iris. germanica, I. pumila and I. pallida were used to investigate the composition and relative contents of floral scent components by headspace solid-phase microextraction (HS-SPME) and gas chromatography–mass spectrometry (GC-MS). A total of 219 floral scent components were detected in blooming flowers. The scent profile varied significantly among and within the three investigated species. Principal component analysis (PCA) indicated that terpenes, alcohols and esters contributed the most to the floral scent components and 1-caryophyllene, linalool, citronellol, methyl cinnamate, β-cedrene, thujopsene, methyl myristate, linalyl acetate, isosafrole, nerol, geraniol were identified as the major components. In a hierarchical cluster analysis, twenty-seven accessions could be clustered into six different groups, most of which had representative scent components such as linalool, citronellyl acetate, thujopsene, citronellol, methyl cinnamate and 1-caryophyllene. Our findings provide a theoretical reference for floral scent evaluation and breeding of bearded irises.


Sign in / Sign up

Export Citation Format

Share Document