scholarly journals Oxidative stress in relation to diet and physical activity among premenopausal women

2016 ◽  
Vol 116 (8) ◽  
pp. 1416-1424 ◽  
Author(s):  
Chelsea Anderson ◽  
Ginger L. Milne ◽  
Dale P. Sandler ◽  
Hazel B. Nichols

AbstractHigher levels of oxidative stress, as measured by F2-isoprostanes, have been associated with chronic diseases such as CVD and some cancers. Improvements in diet and physical activity may help reduce oxidative stress; however, previous studies regarding associations between lifestyle factors and F2-isoprostane concentrations have been inconsistent. The aim of this cross-sectional study was to investigate whether physical activity and intakes of fruits/vegetables, antioxidant nutrients, dietary fat subgroups and alcohol are associated with concentrations of F2-isoprostane and the major F2-isoprostane metabolite. Urinary F2-isoprostane and its metabolite were measured in urine samples collected at enrolment from 912 premenopausal women (aged 35–54 years) participating in the Sister Study. Physical activity, alcohol consumption and dietary intakes were self-reported via questionnaires. With adjustment for potential confounders, the geometric means of F2-isoprostane and its metabolite were calculated according to quartiles of dietary intakes, alcohol consumption and physical activity, and linear regression models were used to evaluate trends. Significant inverse associations were found between F2-isoprostane and/or its metabolite and physical activity, vegetables, fruits, vitamin C, α-carotene, vitamin E, β-carotene, vitamin A, Se, lutein+zeaxanthin and long-chain n-3 fatty acids. Although trans fats were positively associated with both F2-isoprostane and its metabolite, other dietary fat subgroups including SFA, n-6 fatty acids, n-3 fatty acids, MUFA, PUFA, short-chain n-3 fatty acids, long-chain n-3 fatty acids and total fat were not associated with either F2-isoprostane or its metabolite. Our findings suggest that lower intake of antioxidant nutrients and higher intake of trans fats may be associated with greater oxidative stress among premenopausal women.

Nutrients ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1868
Author(s):  
Tuck Seng Cheng ◽  
Felix R. Day ◽  
John R. B. Perry ◽  
Jian’an Luan ◽  
Claudia Langenberg ◽  
...  

Dietary intakes of polyunsaturated, monounsaturated and saturated fatty acids (FAs) have been inconsistently associated with puberty timing. We examined longitudinal associations of prepubertal dietary and plasma phospholipid FAs with several puberty timing traits in boys and girls. In the Avon Longitudinal Study of Parents and Children, prepubertal fat intakes at 3–7.5 years and plasma phospholipid FAs at 7.5 years were measured. Timings of Tanner stage 2 genital or breast development and voice breaking or menarche from repeated reports at 8–17 years, and age at peak height velocity (PHV) from repeated height measurements at 5–20 years were estimated. In linear regression models with adjustment for maternal and infant characteristics, dietary substitution of polyunsaturated FAs for saturated FAs, and higher concentrations of dihomo-γ-linolenic acid (20:3n6) and palmitoleic acid (16:1n7) were associated with earlier timing of puberty traits in girls (n = 3872) but not boys (n = 3654). In Mendelian Randomization models, higher genetically predicted circulating dihomo-γ-linolenic acid was associated with earlier menarche in girls. Based on repeated dietary intake data, objectively measured FAs and genetic causal inference, these findings suggest that dietary and endogenous metabolic pathways that increase plasma dihomo-γ-linolenic acid, an intermediate metabolite of n-6 polyunsaturated FAs, may promote earlier puberty timing in girls.


2020 ◽  
Vol 13 (4) ◽  
pp. 361-370
Author(s):  
Maria Michou ◽  
Demosthenes B. Panagiotakos ◽  
Christos Lionis ◽  
Vassiliki Costarelli

BACKGROUND: Low Health Literacy (HL) and Nutrition Literacy (NL) are associated with serious negative health outcomes. OBJECTIVES: The aim of this study was to investigate certain lifestyle factors and obesity, in relation to HL and NL. METHODS: This cross-sectional study was conducted in the urban area of the Attica region, in Greece. The sample consisted of 1281 individuals, aged ≥18 years. HL, NL sociodemographic characteristics and lifestyle factors (physical activity, smoking status, alcohol consumption,) were assessed. Mann-Whitney U, the Kruskall Wallis, Pearson chi-square tests and multiple linear regression models were used. RESULTS: Linear regression analysis has shown that smoking, alcohol consumption and physical activity, were associated with HL levels (–1.573 points for ex-smokers in comparison to smokers, p = 0.035, –1.349 points for alcohol consumers in comparison to non-consumers, p = 0.006 and 1.544 points for physically active individuals to non-active, p = 0.001). With respect to NL levels, it was also not associated with any of these factors. Obesity was not associated with HL and NL levels. CONCLUSIONS: Certain lifestyle factors, including physical activity, are predicting factors of HL levels, in Greek adults. The results contribute to the understanding of the relationship between lifestyle factors and HL and should be taken into account when HL policies are designed.


10.2196/19688 ◽  
2021 ◽  
Vol 23 (5) ◽  
pp. e19688
Author(s):  
Natalie Gold ◽  
Amy Yau ◽  
Benjamin Rigby ◽  
Chris Dyke ◽  
Elizabeth Alice Remfry ◽  
...  

Background Digital health interventions are increasingly being used as a supplement or replacement for face-to-face services as a part of predictive prevention. They may be offered to those who are at high risk of cardiovascular disease and need to improve their diet, increase physical activity, stop smoking, or reduce alcohol consumption. Despite the popularity of these interventions, there is no overall summary and comparison of the effectiveness of different modes of delivery of a digital intervention to inform policy. Objective This review aims to summarize the effectiveness of digital interventions in improving behavioral and health outcomes related to physical activity, smoking, alcohol consumption, or diet in nonclinical adult populations and to identify the effectiveness of different modes of delivery of digital interventions. Methods We reviewed articles published in the English language between January 1, 2009, and February 25, 2019, that presented a systematic review with a narrative synthesis or meta-analysis of any study design examining digital intervention effectiveness; data related to adults (≥18 years) in high-income countries; and data on behavioral or health outcomes related to diet, physical activity, smoking, or alcohol, alone or in any combination. Any time frame or comparator was considered eligible. We searched MEDLINE, Embase, PsycINFO, Cochrane Reviews, and gray literature. The AMSTAR-2 tool was used to assess review confidence ratings. Results We found 92 reviews from the academic literature (47 with meta-analyses) and 2 gray literature items (1 with a meta-analysis). Digital interventions were typically more effective than no intervention, but the effect sizes were small. Evidence on the effectiveness of digital interventions compared with face-to-face interventions was mixed. Most trials reported that intent-to-treat analysis and attrition rates were often high. Studies with long follow-up periods were scarce. However, we found that digital interventions may be effective for up to 6 months after the end of the intervention but that the effects dissipated by 12 months. There were small positive effects of digital interventions on smoking cessation and alcohol reduction; possible effectiveness in combined diet and physical activity interventions; no effectiveness for interventions targeting physical activity alone, except for when interventions were delivered by mobile phone, which had medium-sized effects; and no effectiveness observed for interventions targeting diet alone. Mobile interventions were particularly effective. Internet-based interventions were generally effective. Conclusions Digital interventions have small positive effects on smoking, alcohol consumption, and in interventions that target a combination of diet and physical activity. Small effects may have been due to the low efficacy of treatment or due to nonadherence. In addition, our ability to make inferences from the literature we reviewed was limited as those interventions were heterogeneous, many reviews had critically low AMSTAR-2 ratings, analysis was typically intent-to-treat, and follow-up times were relatively short. Trial Registration PROSPERO International Prospective Register of Systematic Reviews CRD42019126074; https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=126074.


2007 ◽  
Vol 98 (5) ◽  
pp. 873-877 ◽  
Author(s):  
Berthold Koletzko ◽  
Irene Cetin ◽  
J. Thomas Brenna ◽  

Consensus recommendations on behalf of the European Commission research projects Perinatal Lipid Metabolism (PeriLip; www.perilip.org) and Early Nutrition Programming (EARNEST; www.metabolic-programming.org), developed jointly with representatives of the Child Health Foundation (Stiftung Kindergesundheit; www.kindergesundheit.de), the Diabetic Pregnancy Study Group (DPSG; www.medfak.uu.se/dpsg), the European Association of Perinatal Medicine (EAPM; www.europerinatal.com), the European Society for Clinical Nutrition and Metabolism (ESPEN; www.espen.org), the European Society for Paediatric Gastroenterology, Hepatology and Nutrition, Committee on Nutrition (ESPGHAN; www.espghan.org), the International Federation of Placenta Associations (IFPA; http://aculeate.hopto.org/IFPA) and the International Society for the Study of Fatty Acids and Lipids (ISSFAL; email www.issfal.org.uk).Members of the Perinatal Lipid Intake Working GroupGioia Alvino, Juliana von Berlepsch, Hans Konrad Biesalski, Tom Clandinin, Hildegard Debertina, Tamás Decsi, Hans Demmelmaira, Gernot Desoyebc, Veronika Dietz, Peter Dodds, Pauline Emmett, Fabio Facchinettid, Matthew W. Gillman, Joachim Heinrich, Emilio Herrerab, Irene Hoesli, William C. Heird, Matthew Hyde, Kirsi Laitinen, John Laws, Elvira Larqué Daza, Iliana Lopez-Soldado, Maria Makrides, Kim Fleischer Michaelsene, Sjurdur Olsen, Henar Ortega, Guy Putet, Imogen Rogers, Paola Roggero, Lubos Sobotkaf, Hania Szajewskag, Hope Weiler.(Representing: aChild Health Foundation, bDPSG, cIFPA, dEAPM, eISSFAL, fESPEN, gESPGHAN.)Dietary fat intake in pregnancy and lactation affects pregnancy outcomes and child growth, development and health. The European Commission charged the research project PERILIP, jointly with the Early Nutrition Programming Project, to develop recommendations on dietary fat intake in pregnancy and lactation. Literature reviews were performed and a consensus conference held with international experts in the field, including representatives of international scientific associations. The adopted conclusions include: dietary fat intake in pregnancy and lactation (energy%) should be as recommended for the general population; pregnant and lactating women should aim to achieve an average dietary intake of at least 200 mg DHA/d; intakes of up to 1 g/d DHA or 2·7 g/d n-3 long-chain PUFA have been used in randomized clinical trials without significant adverse effects; women of childbearing age should aim to consume one to two portions of sea fish per week, including oily fish; intake of the DHA precursor, α-linolenic acid, is far less effective with regard to DHA deposition in fetal brain than preformed DHA; intake of fish or other sources of long-chain n-3 fatty acids results in a slightly longer pregnancy duration; dietary inadequacies should be screened for during pregnancy and individual counselling be offered if needed.


2009 ◽  
Vol 68 (OCE3) ◽  
Author(s):  
J. Costa Leite ◽  
A. P. Hearty ◽  
A. P. Nugent ◽  
M. J. Gibney

2013 ◽  
Vol 143 (9) ◽  
pp. 1414-1420 ◽  
Author(s):  
Matthew F. Muldoon ◽  
Kirk I. Erickson ◽  
Bret H. Goodpaster ◽  
John M. Jakicic ◽  
Sarah M. Conklin ◽  
...  

2021 ◽  
Vol 5 (Supplement_2) ◽  
pp. 861-861
Author(s):  
Jowy Seah Yi Hoong ◽  
Wee Siong Chew ◽  
Federico Torta ◽  
Chin Meng Khoo ◽  
Markus R Wenk ◽  
...  

Abstract Objectives Sphingolipid concentrations have been associated with risk of type 2 diabetes and cardiovascular diseases. Because sphingolipids can be synthesized de novo from saturated fatty acids (SFA), dietary fatty acids may affect plasma sphingolipid concentrations. We aimed to evaluate dietary fat and protein intakes in relation to circulating sphingolipid levels. Methods We used cross-sectional data from 2860 ethnic Chinese Singaporeans collected from 2004–2007. Nutrient intakes were estimated on the basis of a validated 159-item food frequency questionnaire. We quantified 79 molecularly distinct sphingolipids in a large-scale lipidomic evaluation from plasma samples. Results Higher saturated fat intake was associated with higher concentrations of 16:1; O2 sphingolipids including ceramides, monohexosylcermides, dihexosylceramides, sphingomyelins, and sphingosine 1-phosphates. Higher polyunsaturated fat intake was associated with lower plasma long-chain ceramides and long-chain monohexosylcermide concentrations. Protein intake was inversely associated with concentrations of most subclasses of sphingolipids, with the exception of sphingolipids containing a 16:1; O2 sphingoid base. Lower intake of saturated fat and higher intake of polyunsaturated fat and protein may decrease plasma concentrations of several sphingolipid classes. Conclusions These findings may represent a novel biological mechanism for the impact of nutrient intakes on cardio-metabolic health. Funding Sources This work was supported by the National Research Foundation Investigatorship grant (NRF-NRFI2015–05, to MRW), A*STAR (I1901E0040), and the National University Health System (NUHSRO/2014/085/AF-Partner/01, DRH). FT was supported by the NRF and A*STAR IAF-ICP I1901E0040.


1998 ◽  
Vol 44 (5) ◽  
pp. 924-929 ◽  
Author(s):  
M-Cruz Pastor ◽  
Cristina Sierra ◽  
María Doladé ◽  
Elisabet Navarro ◽  
Nuria Brandi ◽  
...  

Abstract The excess of genetic information in patients with Down syndrome (DS) produces an increase in the catalytic activity of superoxide dismutase (SOD1), an antioxidant enzyme coded on chromosome 21. It has been suggested that an increase in oxidative stress in DS patients may cause adverse effects in the cell membranes through the oxidation of polyunsaturated fatty acids (PUFAs). The aim of this study was to evaluate the cellular antioxidant system by determining the catalytic activity of the SOD1, glutathione peroxidase (GPx), catalase (CAT), and glutathione reductase (GR) enzymes and the concentrations of α-tocopherol in red blood cells (RBCs) in a group of 72 DS patients. The profile of fatty acids in the phospholipids of RBC membranes was also evaluated. The activity of the erythrocyte antioxidant enzymes is significantly higher in the DS group than in the control group (SOD1, 635 ± 70 U/g Hb vs 476 ± 67 U/g Hb; CAT, 1843 ± 250 U/g Hb vs 1482 ± 250 U/g Hb; GPx, 23.2 ± 5.3 U/g Hb vs 21.5 ± 3.6 U/g Hb; and GR, 9.32 ± 1.4 U/g Hb vs 6.9 ± 1.3 U/g Hb, respectively). No differences were observed in RBC α-tocopherol concentrations between the two groups studied. Long-chain n6 PUFA (C20:3n6, C20:4n6) concentrations were increased in DS patients, suggesting enhanced Δ-6-desaturase activity. The long-chain n3 PUFA (docosahexenoic acid) does not appear to be affected by increased oxidative stress, probably because of the existence of compensatory antioxidant mechanisms.


Sign in / Sign up

Export Citation Format

Share Document