Impacts of projected climate change on productivity and nitrogen leaching of crop rotations in arable and pig farming systems in Denmark

2012 ◽  
Vol 152 (1) ◽  
pp. 75-92 ◽  
Author(s):  
J. DOLTRA ◽  
M. LÆGDSMAND ◽  
J. E. OLESEN

SUMMARYThe effects of projected changes in climate and atmospheric CO2 concentration on productivity and nitrogen (N) leaching of characteristic arable and pig farming rotations in Denmark were investigated with the FASSET simulation model. The LARS weather generator was used to provide climatic data for the baseline period (1961–90) and in combination with two regional circulation models (RCM) to generate climatic data under the Intergovernmental Panel on Climate Change (IPCC) A1B emission scenario for four different 20-year time slices (denoted by midpoints 2020, 2040, 2060 and 2080) for two locations in Denmark, differing in soil and climate, and representative of the selected production systems. The CO2 effects were modelled using projected CO2 concentrations for the A1B emission scenario. Crop rotations were irrigated (sandy soil) and unirrigated (sandy loam soil), and all included systems with and without catch crops, with field operation dates adapted to baseline and future climate change. Model projections showed an increase in the productivity and N leaching in the future that would be dependent on crop rotation and crop management, highlighting the importance of considering the whole rotation rather than single crops for impact assessments. Potato and sugar beet in arable farming and grain maize in pig farming contributed most to the productivity increase in the future scenarios. The highest productivity was obtained in the arable system on the sandy loam soil, with an increase of 20% on average in 2080 with respect to the baseline. Irrigation and fertilization rates would need to be increased in the future to achieve optimum yields. Growing catch crops reduces N leaching, but current catch crop management might not be sufficient to control the potential increase of leaching and more efficient strategies are required in the future. The uncertainty of climate change scenarios was assessed by using two different climate projections for predicting crop productivity and N leaching in Danish crop rotations, and this showed the consistency of the projected trends when used with the same crop model.

Soil Research ◽  
2000 ◽  
Vol 38 (1) ◽  
pp. 13 ◽  
Author(s):  
R. G. Silva ◽  
K. C. Cameron ◽  
H. J. Di ◽  
N. P. Smith ◽  
G. D. Buchan

A field lysimeter experiment was conducted to determine the effect of macropore flow on the transport of surface-applied cow urine N through soil. The lysimeters (500 mm diameter by 700 mm depth) used for this experiment were collected from Templeton fine sandy loam soil (Udic Ustochrept), which had been under ryegrass (Lolium perenne L.) and white clover (Trifolium repens L.) pasture for 9–10 years. The effect of macropore flow on urine-N leaching was determined by leaching experiments under 0.5 kPa and 0 kPa water tensions (suctions) imposed on top of the lysimeter using a disc tension infiltrometer. The 0.5 kPa suction prevented soil pores >600 µm diameter from conducting water and solutes, while the 0 kPa suction allowed conduction under ‘field saturated’ condition. Pores >600 µm diameter transmitted about 98% of the total nitrogen (N) leached below 700 mm depth. The main form of N transmitted under 0 kPa was ammonium (NH4 -N), accounting for 10.5% of the total N applied at 0 kPa suction. This was significantly higher than the amount of NH 4 -N leached at 0.5 kPa suction, which accounted for 0.17% of N applied. The urea-N in the leachate reached 16 mg/L at 0 kPa suction, and accounted for 1.6% of the total N applied. No urea was detected in the leachate at the 0.5 kPa suction. The concentrations and amounts of nitrate (NO3 -N) leached were very low and did not differ between the two suctions. The forms and amounts of N leached were affected by the interactions of macropore flow and N transformations in the soil, and the environmental conditions during the two leaching events. From this work, it is recommended that stock should be removed 1–2 days before irrigation water is applied as this will allow animal urine to diffuse into soil micropores and thus decrease N leaching by macropore flow.


2015 ◽  
Vol 15 (4) ◽  
pp. 727-735 ◽  
Author(s):  
R. Kumar ◽  
Zeenat Farooq ◽  
Sakiba Nabi ◽  
Deepak Jhajharia

Water, one of the most crucial inputs of irrigation, should be utilized judiciously to identify appropriate strategies for planning and management of irrigated farmland. The present study was conducted for the crop maize (Zea mays), grown mainly in the rabi-season (July–October), to evaluate the irrigation water requirements in the temperate region of Kashmir Valley, India during the last 20 years from 1993 to 2012. The crop evapotranspiration values have been determined using the universally accepted Penman–Monteith method. The reference evapotranspiration varied by 93 mm, which accounts for variation of 20.12% for a temperature change of 1.61 °C. Net irrigation requirement of the crop is influenced greatly due to the possible effect of climate change, observed through varying temperature in different crop periods. The number of irrigations required in sandy loam soil is much more than the required number of irrigations in clay loam soil. The irrigation scheduling was analyzed using meteorological data through FAO-56 Penman–Monteith method as a guiding force for irrigation water management in order to save water and increase crop water use efficiency. The time series analysis reveals that maize crop in sandy loam and clay loam needs to be advanced by 5 days and 4 days in order to adapt for the climate change.


2006 ◽  
Vol 144 (5) ◽  
pp. 435-447 ◽  
Author(s):  
B. R. TAYLOR ◽  
D. YOUNIE ◽  
S. MATHESON ◽  
M. COUTTS ◽  
C. MAYER ◽  
...  

Trials at Tulloch, Aberdeen (sandy loam soil, 820 mm rainfall) and Woodside, Elgin (light sandy loam, 730 mm) compared organically managed crop rotations containing different proportions of spring oats, swedes, potatoes and grass/clover leys (0·50 and 0·67 of the rotation at Tulloch; 0·38 and 0·50 at Woodside). The trials simulated farm conditions through the use of grazing animals and the recycling of farmyard manure. The rotations at each site gave similar financial outputs. Yields of oats were higher where these were grown after the main ley phase of the rotation than where they were grown later in the rotation (more ears/m2 and grains/ear), but were not significantly higher after a 4-year ley than after a 3-year ley at Tulloch. It was concluded that all of the rotations were agronomically and financially sustainable. Cereal yields showed large year-to-year variations but little indication of a progressive decline. There were only small changes in soil organic matter, soil P and soil K. Increased early summer weed cover in the arable crops was not matched by increases in weed invasion in the grass/clover leys and did not appear to be affecting yields.


1995 ◽  
Vol 75 (3) ◽  
pp. 385-390 ◽  
Author(s):  
Marc O. Gasser ◽  
Marc R. Laverdière ◽  
Adrien N’dayegamiye

A 3-yr study (1988–1990) was conducted on a Beaurivage sandy loam soil located in St-Lambert, Québec, Canada, to evaluate the short-term effects of crop rotations and organic amendments on soil properties and potato yields (Solanum tuberosum, L.). Treatments consisted of yearly fall rye (Secale cereale, L.) as a green-manure cover crop, barley (Hordeum vulgare, L.) grown every 3-yr in potato crop rotation, partially humified bark residues and fresh tree clippings applied once at 100 m3 ha−1 in the beginning of the experiment, and continuous potato in monoculture used as check. Fertilizer rates were applied at 150, 100, 160 and 40 kg ha−1 rates for N, P2O5, K2O5 and Mg, respectively. Results indicated that more rapid changes of soil C content were observed with ligneous material incorporation than with fall rye and barley residue additions. Compared with fresh tree cuttings, partially humified bark induced rapid changes in soil organic C and cationic exchange capacity (CEC). A temporary soil structural stability improvement was observed in 1989 under fall rye cover crop. However soil bulk density increased significantly (P < 0.05) in these plots in 1990, and this was also related to low potato yields. Barley residues and ligneous amendments significantly improved soil water content during the critical flowering stage, and this increased potato yields and specific gravity (P < 0.05). In general, soil amendment would improve potato yields and quality through improved soil water content on a short-term. Key words: Barley, rye, rotation, cover crop, ligneous amendments, potato yields, soil physical and chemical properties


OENO One ◽  
2018 ◽  
Vol 52 (1) ◽  
Author(s):  
Maria Concepción Ramos ◽  
Gregory V Jones ◽  
Jesús Yuste

Aim: This research examined relationships between grapevine phenology and climate in the Ribera del Duero DO (Spain). The observed varieties included Tempranillo, the main variety planted in the region, and Cabernet-Sauvignon.Methods and Results: Phenological events for stages C (budbreak), I (bloom), M (véraison) and N (maturity) were analyzed for 2004-2015. Dormant period chilling and late winter heating requirements to initiate growth were evaluated and accumulated temperature (growing degree days-GDD) prior to each phenological event and in between events were examined for the role they play in influencing growth timing. The results were then used to examine future phenological changes due to climate change using eight models integrated in the Coupled Model Intercomparison Project (CMIP5) and for two Representative Concentration Pathways (RCP) scenarios – RCP4.5 and RCP8.5 – for 2030, 2050, and 2070. Accumulated temperatures after March 20th become important for initiating phenology and are strongly correlated to all growth events. The influence of water availability between budbreak and bloom and between bloom and véraison on phenological timing was also confirmed.Conclusions: The projections showed that for the RCP4.5 emission scenario, budbreak is predicted earlier by approximately 2 days for 2030, 3 days for 2050 and 5 days for 2070, while bloom is predicted to be 3 to 8 days earlier and véraison 6 to 19 days earlier for the same time periods. For the RCP8.5 emission scenario, budbreak is modeled to take place about 3 days, 5 days and 9 days earlier, respectively for 2030, 2050 and 2070. Bloom is predicted to occur about 5, 10 and 16 days earlier; véraison is predicted earlier by 10 days for 2030, 19 days for 2050, and 28 days for 2070. Maturity and the timing of harvest could be up to 23 days earlier under the RCP4.5 emission scenario and up to 35 days earlier under the RCP8.5 emission scenario. Compared to Cabernet-Sauvignon, Tempranillo exhibited greater phenological sensitivity to temperature changes in the observed time period that is likely to continue into the future with greater changes to earlier growth events projected. This sensitivity could be problematic for the region due to the variety’s historic importance and points to the need to examine adaptive measures that can help growers to respond to projected changes in climate.Significance and impact of the study: The projected climate changes in the future indicate the potential for significant changes in the phenology of Tempranillo in the Ribera del Duero DO, Spain. Given that this variety has the largest contribution and importance in this region, these changes could have impacts on wine quality, indicating the need of establishing strategies to reduce or mitigate the impact from future changes in climate.


2018 ◽  
Vol 13 (1) ◽  
pp. 93 ◽  
Author(s):  
Erdona Demiraj ◽  
Angela Libutti ◽  
Jamarbër Malltezi ◽  
Evan Rroço ◽  
Ferdi Brahushi ◽  
...  

European lacustrine systems are frequently exposed to nitrate (NO3–) pollution causing eutrophication processes. An example of these lakes is Shkodra Lake, a large, shallow lake shared by Albania and Montenegro, in the Balkans Peninsula. Shkodra Lake is a natural sink that collects NO3– from agricultural activities, widely diffused in the surrounding area. The additions of wheat straw and biochar have been suggested to increase soil NO3– retention of agricultural lands. To better understand the role of these two organic soil amendments in mitigating NO3– leaching from arable lands, a pot experiment using a representative sandy loam soil of the Skodra Lake basin was performed. More specifically, a greenhouse experiment with Lolium multiflorum L. and Zea mays L., was carried out for three months, to evaluate the concentrations of NO3–-N in leachate and the cumulative leaching losses of NO3–-N, after wheat straw (10 Mg ha–1) and biochar (10 Mg ha–1) soil addition, under the same rate of NPK fertiliser (300 kg ha–1). The effect of the two organic amendments on nitrate retention, was evaluated according to two methods: i) Soil NO3–-N leaching with distilled water; and ii) Soil NO3–-N extraction with 2M KCl. The leached NO3–-N and the Potentially Leachable NO3–-N (2M KCl extraction) were respectively determined. N uptake by plants, as well as the Nitrogen Use Efficiency were also calculated. A retention effect on nitrate was found in Lolium multiflorum L. and wheat straw treatments compared to control, by reducing leached NO3–-N almost to 35%. In SBFL (soil+biochar+fertiliser+Lolium) treatment, biochar effectively reduced the total amount of nitrate in leachate of 27% and 26% compared to SFL (soil+fertiliser+Lolium) and SSFL (soil+straw+fertiliser+Lolium) treatments, respectively. The potentially leachable NO3–-N was two to four times higher than the leached NO3–-N. The amount of potentially leachable NO3–-N per hectare ranged from 220 in SL (soil+Lolium) treatment, to 500 kg ha–1 in SFL. N plant uptake values ranged from 18.16 mg kg–1 in the non- fertilised treatment to 58.06 mg kg–1 soil in SSFM (soil+straw+fertiliser+maize) treatment. The NUE showed a similar trend (from 0 in the non-fertilised treatment to 47.9 % in SSFM). Results indicated a mitigating action of biochar on leaching of NO3–-N (leached up to 100 kg ha–1), despite the retention effect of the two different amendments applied.


Author(s):  
Caleb Elijah Egene ◽  
Ivona Sigurnjak ◽  
Inge C. Regelink ◽  
Oscar F. Schoumans ◽  
Fabrizio Adani ◽  
...  

Abstract Purpose This study investigated the C and N mineralisation potential of solid fractions (SFs) from co-digestated pig manure after P-stripping (P-POOR SF) in comparison with P-rich SFs, as a means to estimate their organic matter stability in soil. Compost (COMP) and biochar (BCHR) (made from P-POOR SF) were also included in the study as reference biosolids. Methods The SFs were incubated in a sandy-loam soil under moist conditions to determine production of CO2 and mineral N. At specified intervals, CO2 evolution in the mixtures was measured via the alkali trap method and titration over a period of 81 days, while mineral N was measured using a flow analyser after KCl extraction over a period of 112 days. Results The various SFs showed similar patterns of C mineralisation (15–26% of added total C in 81 days) that were clearly higher than for COMP and BCHR (6% and 7%, respectively). Temporary N immobilisation was observed in biosolids with a high C/N ratio. The effective organic matter (EOM) of the SFs was calculated based on the C mineralisation data and varied between 130 and 369 kg Mg−1. Conclusions The SF with a reduced P content had a high EOM/P ratio which is beneficial in areas where P status of the soil is already high. Moreover, the N mineralisation patterns confirm that a high C/N ratio may also reduce risks for N leaching due to temporary N immobilisation.


2015 ◽  
Vol 154 (2) ◽  
pp. 175-185 ◽  
Author(s):  
F. SHABANI ◽  
B. KOTEY

SUMMARYThe present study applies refined and improved scenarios for climate change to quantify the effects of potential alterations in climatic factors on localities for wheat and cotton production, which are two crops important to Australia's economy. The future distributions of Gossypium (cotton) and Triticum aestivum L. (wheat) were modelled using CLIMEX software with the A2 emission scenario generated by CSIRO-Mk3·0 and MIROC-H global climate models. The results were correlated to identify areas suitable for these economically important crops for the years 2030, 2050, 2070 and 2100 in Australia. The analysis shows that the areas where wheat and cotton can be grown in Australia will diminish from 2030 to 2050 and 2070 through to 2100. While cotton can be grown over extensive areas of the country until 2070, the area grown to wheat will decrease significantly over the period.


Agronomy ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 979 ◽  
Author(s):  
Joseph R. Sanford ◽  
Rebecca A. Larson

Biochar soil amendment to agricultural systems can reduce nitrogen (N) leaching; however, application to agricultural nitrogen treatment systems has not been extensively explored. The objective of this study was to assess the impact on N leaching in soils receiving repeated N applications which may be observed in agricultural treatment systems. In this study, 400 °C, 700 °C, and oxidized 700 °C corncob biochar was amended to sandy loam soil columns at 5% (wt/wt) to assess the impacts to N cycling following repeated synthetic N applications. Columns received weekly applications of either organic N (ORG-N), ammonium (NH4+-N), or nitrate (NO3−-N) and the N effluent, gaseous emissions, and soil N retention was measured. Biochar produced at 400 °C significantly reduced N leaching compared to control columns by 19% and 15% for ORG-N and NH4+-N, respectively, with application concentrations similar to silage bunker runoff. For NO3−-N applications, 700 °C biochar significantly reduced leaching by 25% compared to the controls. The primary mechanism reducing N effluent for biochar amended columns was enhanced soil retention of ORG-N and NO3−-N. Biochar surface chemistry analysis measured an increase in oxygenated functional groups and cationic minerals on the biochar surface, which likely enhanced retention through cationic bridging or the development of an organomineral layer on the biochar surface. Results indicated biochar amendment to agricultural treatment systems receiving N runoff may reduce the risk of N leaching.


Sign in / Sign up

Export Citation Format

Share Document