n immobilisation
Recently Published Documents


TOTAL DOCUMENTS

11
(FIVE YEARS 4)

H-INDEX

5
(FIVE YEARS 0)

Agronomy ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2390
Author(s):  
Michael Stotter ◽  
Florian Wichern ◽  
Ralf Pude ◽  
Martin Hamer

Cultivation of perennials such as Miscanthus x giganteus Greef et Deuter (Mis) combines the provision of ecosystem services and the generation of additional carbon sources for farming. The potential of Mis based fertilisers, regarding immobilisation of inorganic nitrogen (N) and build-up of soil organic matter (SOM), was tested in a field trial. Therefore, a crop rotation of winter barley (Hordeum vulgare L.), mustard (Sinapis alba L.) as catch crop, sugar beet (Beta vulgaris L.) and winter wheat (Triticum aestivum L.) was set up. The tested treatments were a mixture of Cattle Slurry (CS) and Mis, a mixture of CS and Wheat Straw (CS–WS), Cattle Manure (CM) from Mis shredded bedding, CM from WS shredded bedding, a pure CS, Urea Ammonium Nitrate (UAN) and a treatment without any N applied (NoN). When the carbon-rich fertilisers (both mixtures and manures) were applied to cereals, they led to a slight N immobilisation compared to pure CS, whereas differences were mostly not significant. Furthermore, Mis fertilisers were at least as efficient as WS-based organic fertilisers in inducing a contribution of SOM build-up and in reducing inorganic N before winter and thus preventing N losses, whereas differences were mostly not significant.


New Forests ◽  
2021 ◽  
Author(s):  
Bartosz Adamczyk ◽  
Sylwia Adamczyk ◽  
Veikko Kitunen ◽  
Tuija Hytönen ◽  
Raisa Mäkipää ◽  
...  

AbstractTree seedlings are produced in tree nurseries. However, nursery-grown seedlings often exhibit poor performance after outplanting due to the lack of adaptation to harsh natural conditions. These nursery-grown seedlings do not necessarily possess well-developed ectomycorrhizal symbionts, which help to obtain nutrients and increase resilience in exchange for seedling photoassimilated carbon. To improve the quality of the seedlings in natural conditions, we sowed spruce seeds on growing media with the addition of wood chips, i.e. stemwood chips or polyphenol- and resin acid-rich knotwood chips. Wood chips were chosen because they are common forest side-streams, and their compounds have shown a potential to improve mycorrhization and seedling fitness. Wood chips initially decreased the growth of seedlings. However, this effect levelled off with time and depended on the quality of the wood. Wood chips had no effect on mycorrhization. Further testing of the wood material showed that wood chips seemed to decrease seedling growth via nitrogen (N) immobilisation rather than a direct toxic effect. The phenomenon of N immobilisation on wood chips could be explored further to develop a slow-release N source, aptly reflecting N availability in natural conditions. Slow-release N source based on wood chips could be beneficial both to increase survival in natural conditions and for environment protection.


Author(s):  
Caleb Elijah Egene ◽  
Ivona Sigurnjak ◽  
Inge C. Regelink ◽  
Oscar F. Schoumans ◽  
Fabrizio Adani ◽  
...  

Abstract Purpose This study investigated the C and N mineralisation potential of solid fractions (SFs) from co-digestated pig manure after P-stripping (P-POOR SF) in comparison with P-rich SFs, as a means to estimate their organic matter stability in soil. Compost (COMP) and biochar (BCHR) (made from P-POOR SF) were also included in the study as reference biosolids. Methods The SFs were incubated in a sandy-loam soil under moist conditions to determine production of CO2 and mineral N. At specified intervals, CO2 evolution in the mixtures was measured via the alkali trap method and titration over a period of 81 days, while mineral N was measured using a flow analyser after KCl extraction over a period of 112 days. Results The various SFs showed similar patterns of C mineralisation (15–26% of added total C in 81 days) that were clearly higher than for COMP and BCHR (6% and 7%, respectively). Temporary N immobilisation was observed in biosolids with a high C/N ratio. The effective organic matter (EOM) of the SFs was calculated based on the C mineralisation data and varied between 130 and 369 kg Mg−1. Conclusions The SF with a reduced P content had a high EOM/P ratio which is beneficial in areas where P status of the soil is already high. Moreover, the N mineralisation patterns confirm that a high C/N ratio may also reduce risks for N leaching due to temporary N immobilisation.


2020 ◽  
Author(s):  
Jessica Clayton ◽  
Steffen Rothardt ◽  
Rüdiger Reichel ◽  
Michael Bonkowski

<p>Every year agricultural soils lose significant amounts of nitrogen (N) over winter through N leaching and gas emissions as a result of freeze-thaw cycles. The incorporation of carbon amendments after harvest, such as crop residues or other carbon rich material, can help to promote soil microbial growth, and in doing so, immobilise N within the microbial biomass. It is still unclear which amendments are most effective at promoting microbial N immobilisation and at what time they should be incorporated into the soil to give best results.</p><p>In order to investigate this, we measured soil microbial biomass carbon (C<sub>mic</sub>) and -nitrogen (N<sub>mic</sub>) at 12 timepoints between harvest and spring in soils from an established agricultural field experiment in Kiel (Germany). We selected plots which had the same fertilisation regime and crop rotation (Faba bean-winter wheat-winter barley rotation) but differed in soil carbon amendment treatment; removal of residues (control), wheat straw, faba bean, and sawdust.  In addition to microbial biomass measurements, we measured microbial nutrient limitation at each timepoint via substrate induced respiration, in order to give a qualitative indication of microbial activity in respect to growth limiting nutrients.</p><p>Our data show that there was little effect of wheat straw in comparison to the control on the microbial biomass carbon or -nitrogen, but different patterns were observed for the latter amendments. C<sub>mic</sub> generally decreased over time after harvest in all treatments, but again the decreases were less pronounced in the faba bean and sawdust treatments. N<sub>mic</sub> decreased over time after harvest in control and wheat straw treatment but increased with time in the faba bean and sawdust treatments, suggesting improved N immobilisation by the microbial biomass for these treatments. We found that all soils were nearly always N limited throughout the winter and were never P limited. However, a shift to C limitation was observed after addition of fertiliser in spring, except for in the sawdust treatment, which remained N limited despite the addition of mineral N in the field. This result suggests that sawdust has a higher potential for N immobilisation compared to the other soil amendments.</p><p>In summary, there was little difference in the microbial post-harvest dynamics between the control and wheat straw treatments but stronger effects were observed in the faba bean and saw dust treatments, which suggested improved microbial N immobilisation. Interestingly, the sawdust amendment seemed to have the highest potential for microbial N immobilisation over winter and enduring into spring.</p>


2008 ◽  
Vol 13 (3) ◽  
pp. 268 ◽  
Author(s):  
A. JENG ◽  
T. HARALDSEN ◽  
N. VAGSTAD

Meat and bone meal (MBM) contains appreciable amounts of nitrogen (N), phosphorus and calcium making it interesting as fertilizer to various crops. The effect of Norwegian MBM as N fertilizer has been evaluated in pot and field experiments. The soils used in the pot experiment were peat and a sand/peat mixture, both low in content of plant nutrients. The field experiment was carried out on a silt loam. In the pot experiment increasing amounts of MBM gave significantly increased yields, although there was a partly N immobilisation shortly after seeding the soil based on peat organic matter. In the field experiment there was no period of N immobilisation and good N effect was found also for small amounts of MBM (Total N 50 kg ha-1). At total N 100 kg ha-1 there were no significant differences in grain yield of spring wheat between the treatments with MBM, mineral N fertilizer, and combination of MBM and mineral N fertilizer (N 50 kg ha-1 from each). The results indicate that the relative N efficiency of MBM compared to mineral fertilizer is 80% or higher, if MBM is applied to cereals in spring.;


Soil Research ◽  
2008 ◽  
Vol 46 (3) ◽  
pp. 281 ◽  
Author(s):  
J. Ma ◽  
H. Xu ◽  
Y. Han ◽  
Z. C. Cai ◽  
K. Yagi

Short-term effects of wheat straw incorporation into paddy field include stimulation of CH4 emissions, immobilisation of available N, suppression of rice growth, and accumulation of toxic materials. To study these short-term effects as affected by timing of rice transplantation, a field experiment was conducted at Dapu, China, in 2005. Two levels of wheat straw (0 and 3.75 t/ha) and 2 rice-transplanting times (normal and delayed) were adopted in this experiment. Methane emissions, concentrations of soil mineral N, dry matter accumulations, and grain yields were measured. Delayed rice transplantation had no effect on total CH4 emission from paddy fields incorporated with wheat straw (P > 0.05), but a significant effect on mineralisation of N (P < 0.05), in contrast to the net N immobilisation in the fields where seedlings were transplanted on the normal date. In paddy fields incorporated with wheat straw, delayed transplantation tended to promote rice growth and increase grain yield compared with transplantation on the normal date.


2007 ◽  
Vol 80 (1) ◽  
pp. 39-47 ◽  
Author(s):  
Christophe Nguyen ◽  
Fabienne Froux ◽  
Sylvie Recous ◽  
Thierry Morvan ◽  
Christophe Robin

2006 ◽  
Vol 30 (4) ◽  
pp. 707-714 ◽  
Author(s):  
Jeferson Dieckow ◽  
Egon José Meurer ◽  
Roberto Luiz Salet

The timing of N application to maize is a key factor to be considered in no-till oat/maize sequential cropping. This study aimed to evaluate the influence of pre-planting, planting and sidedress N application on oat residue decomposition, on soil N immobilisation and remineralisation and on N uptake by maize plants in no-till oat/maize sequential cropping. Undisturbed soil cores of 10 and 20 cm diameter were collected from the 0-15 cm layer of a no-till Red Latossol, when the oat cover crop was in the milk-grain stage. Two greenhouse experiments were conducted simultaneously. Experiment A, established in the 10 cm diameter cores and without plant cultivation, was used to asses N dynamics in soil and oat residues. Experiment B, established in the 20 cm diameter cores and with maize cultivation, was used to assess plant growth and N uptake. An amount of 6.0 Mg ha-1 dry matter of oat residues was spread on the surface of the cores. A rate of 90 kg N ha-1 applied as ammonium sulphate in both experiments was split in pre-planting, planting and sidedress applications as follows: (a) 00-00-00 (control), (b) 90-00-00 (pre-planting application, 20 days before planting), (c) 00-90-00 (planting application), (d) 00-30-60 (split in a planting and a sidedress application 31 days after emergence), (e) 00-00-00* (control, without oat residue) and (f) 90-00-00* (pre-planting application, without oat residue). The N concentration and N content in oat residues were not affected during decomposition by N fertilisation. Most of the fertiliser NH4+-N was converted into NO3--N within 20 days after application. A significant decrease in NO3--N contents in the 0-4 cm layer was observed in all treatments between 40 and 60 days after the oat residue placement on the soil surface, suggesting the occurrence of N immobilisation in this period. Considering that most of the inorganic N was converted into NO3- and that no immobilisation of the pre planting fertiliser N occurred at the time of its application, it was possible to conclude that pre-planting applied N was prone to losses by leaching. On the other hand, with split N applications, maize plants showed N deficiency symptoms before sidedress application. Two indications for fertiliser-N management in no-till oat/maize sequential cropping could be suggested: (a) in case of split application, the sidedress should be earlier than 30 days after emergence, and (b) if integral application is preferred to save field operations, this should be done at planting.


2002 ◽  
Vol 36 (3) ◽  
pp. 190-199 ◽  
Author(s):  
Andrew Vinten ◽  
Whitmore A. ◽  
Bloem J. ◽  
Howard R. ◽  
Wright F.

2002 ◽  
Vol 6 (1) ◽  
pp. 101-112 ◽  
Author(s):  
Ø. Kaste ◽  
A. Henriksen ◽  
M. Posch

Abstract. The steady-state First-order Acidity Balance (FAB) model for calculating critical loads of sulphur (S) and nitrogen (N) is applied to 609 Norwegian soft-water lakes to assess the future nitrate (NO3‾) leaching potential under present (1992-96) S and N deposition. The lakes were separated into five groups receiving increasing levels of N deposition (<25, 25-49, 50-74, 75-99 and 100-125 meq m-2yr-1). Using long-term sustainable N sink rates presently recommended for FAB model applications, N immobilisation, net N uptake in forests, denitrification and in-lake N retention were estimated for each group of lakes. Altogether, the long-term N sinks constituted 9.9 ± 3.2 to 40.5 ± 11.4 meq m-2yr-1 in the lowest and highest N deposition categories, respectively. At most sites, the current N deposition exceeds the amount of N retained by long-term sustainable N sinks plus the NO3‾ loss via the lake outlets. This excess N, which is currently retained within the catchments may, according to the FAB model, leach as acidifying NO3‾ in the future. If these predictions are fulfilled, NO3‾ leaching at sites in the various N deposition categories will increase dramatically from present (1995) mean levels of 1-20 meq m-2yr-1, to mean levels of 7-70 meq m-2yr-1 at future steady state. To illustrate the significance of such an increase in NO3‾ leaching, the mean Acid Neutralising Capacity (ANC) at sites in the highest N deposition category may decrease from -18 ± 15 μeq L-1 at present, to -40 ± 20 μeq L-1. Under present S and N deposition levels, the FAB model predicts that 46% of the Norwegian lakes may experience exceedances of critical loads for acidifying deposition. In comparison, the Steady-State Water Chemistry model (SSWC), which considers only the present N leaching level, estimates critical load exceedances in 37% of the lakes under the same deposition level. Thus far, there are great uncertainties regarding both the time scales and the extent of future N leaching, and it is largely unknown whether the FAB model predictions will ever be fulfilled. Hence, long-term monitoring and further studies on N immobilisation processes under varying N deposition levels and ecosystem types seem necessary to make better predictions of future NO3‾ leaching. Keywords: Lakes, hydrochemistry, nitrogen, nitrate, sinks, leaching, acidification, critical loads, FAB model


Sign in / Sign up

Export Citation Format

Share Document