scholarly journals Genotypic resistance to brown heart incidence in swede parent lines and F1 hybrids and the influence of applied boron

2013 ◽  
Vol 153 (2) ◽  
pp. 195-204 ◽  
Author(s):  
F. FADHEL ◽  
A. J. JELLINGS ◽  
S. KENNEDY ◽  
M. P. FULLER

SUMMARYBreeding trials for swede (Brassica napus var. napobrassica) in 2000–2010 showed that 0·85 of the incidence of brown heart (BH) in the trials was associated with genotypes that are progeny of Ag31, Or13 and Me77c. In order to investigate this and the effect of treatment with boron (B), established varieties and improved parent lines carrying male sterility (ms), and their F1 hybrids (test hybrids), were grown in a field trial in the UK in 2011 and subjected to four B treatments (0·00, 1·35, 1·80 and 2·70 kg B/ha). The results confirmed that BH incidence and severity was affected by genotype but could be ameliorated by B application. Genotype Ag31 was very susceptible while Or13 and Me77c were of intermediate susceptibility and the hybrids between susceptible parents were also sensitive. Genotypes Gr19 and Ly01 were highly resistant even in the absence of B application. Hybrids between resistant and susceptible lines were highly resistant. The use of ms had no influence on BH. Resistance to BH was a dominant trait: homozygous dominant (BHBH) or heterozygous (BHbh) genotypes confer this trait, while susceptibility is recessive (bhbh). Some quantitative variation existed, suggesting that resistance was not a single gene effect. There was a significant negative correlation (r=−0·632) between root B content and the severity of BH in susceptible genotypes. Severe BH was associated with 12–21·5 μg B/g of root dry weight at zero B applied. Moderate discolouration was associated with 19·5–24·8 μg B/g recorded at moderate B applied and only Ag31 showed BH at 2·70 kg B/ha. Resistant varieties had root contents of 23 μg B/g or more while susceptible varieties required a minimum of 31 μg B/g to offset BH.

Genetics ◽  
2003 ◽  
Vol 164 (2) ◽  
pp. 645-653 ◽  
Author(s):  
Eric Jenczewski ◽  
Frédérique Eber ◽  
Agnès Grimaud ◽  
Sylvie Huet ◽  
Marie Odile Lucas ◽  
...  

Abstract Precise control of chromosome pairing is vital for conferring meiotic, and hence reproductive, stability in sexually reproducing polyploids. Apart from the Ph1 locus of wheat that suppresses homeologous pairing, little is known about the activity of genes that contribute to the cytological diploidization of allopolyploids. In oilseed rape (Brassica napus) haploids, the amount of chromosome pairing at metaphase I (MI) of meiosis varies depending on the varieties the haploids originate from. In this study, we combined a segregation analysis with a maximum-likelihood approach to demonstrate that this variation is genetically based and controlled mainly by a gene with a major effect. A total of 244 haploids were produced from F1 hybrids between a high- and a low-pairing variety (at the haploid stage) and their meiotic behavior at MI was characterized. Likelihood-ratio statistics were used to demonstrate that the distribution of the number of univalents among these haploids was consistent with the segregation of a diallelic major gene, presumably in a background of polygenic variation. Our observations suggest that this gene, named PrBn, is different from Ph1 and could thus provide complementary information on the meiotic stabilization of chromosome pairing in allopolyploid species.


Genetics ◽  
2003 ◽  
Vol 165 (3) ◽  
pp. 1569-1577
Author(s):  
Thomas C Osborn ◽  
David V Butrulle ◽  
Andrew G Sharpe ◽  
Kathryn J Pickering ◽  
Isobel A P Parkin ◽  
...  

Abstract A reciprocal chromosomal transposition was identified in several annual oilseed Brassica napus genotypes used as parents in crosses to biennial genotypes for genetic mapping studies. The transposition involved an exchange of interstitial homeologous regions on linkage groups N7 and N16, and its detection was made possible by the use of segregating populations of doubled haploid lines and codominant RFLP markers. RFLP probes detected pairs of homeologous loci on N7 and N16 for which the annual and biennial parents had identical alleles in regions expected to be homeologous. The existence of an interstitial reciprocal transposition was confirmed by cytological analysis of synaptonemal complexes of annual × biennial F1 hybrids. Although it included approximately one-third of the physical length of the N7 and N16 chromosomes, few recombination events within the region were recovered in the progenies of the hybrids. Significantly higher seed yields were associated with the parental configurations of the rearrangement in segregating progenies. These progenies contained complete complements of homeologous chromosomes from the diploid progenitors of B. napus, and thus their higher seed yields provide evidence for the selective advantage of allopolyploidy through the fixation of intergenomic heterozygosity.


1970 ◽  
Vol 50 (3) ◽  
pp. 233-247 ◽  
Author(s):  
D. B. FOWLER ◽  
R. K. DOWNEY

Self-pollinated seed from normal and erucic acid free plants of summer rapeseed (Brassica napus L.) was harvested at weekly intervals from pollination to maturity. Oven-dried whole seeds and their component parts were weighed and analyzed for oil content and fatty acid composition. Oil and dry matter accumulation followed sigmoidal patterns, most of the deposition occurring between 14 and 35 days after pollination (DAP). The relative contribution of the testa, endosperm and embryo to dry weight and oil content of whole seeds changed significantly during seed development. Oil content of the developing embryo varied from 22 to 44%, and the testa from 1.6 to 13%, although at maturity only 6 to 8% oil was found in the testa and adhering aleurone. The nucleate endosperm oil content was estimated to be low and in the order of 2 to 2.5%. In 7- to 14-day-old seeds the dry weight, oil content and fatty acid composition were largely determined by the testa and endosperm. From 14 to 21 DAP the testa and embryo were dominant and after 21 DAP the embryo was the controlling influence on the seed characteristics studied.Oils of the testa, nucleate endosperm and embryo differed in fatty acid composition. In seeds free of erucic acid, the ratios of the 18 carbon fatty acids of the embryo and testa remained nearly constant from 21 DAP to maturity. This suggested that the variation in fatty acid composition as well as oil content during seed development in this material was due to disproportionate changes in the contribution of the testa, nucleate endosperm and embryo. However, in developing seeds capable of producing erucic acid a change in the ratio of fatty acid synthesis occurred in both the testa and embryo.


Author(s):  
M. Wilkinson ◽  
L. Elliott ◽  
J. Allainguillaume ◽  
C. Norris ◽  
R. Welters ◽  
...  

1997 ◽  
Vol 129 (4) ◽  
pp. 371-378 ◽  
Author(s):  
J. E. FLINTHAM ◽  
W. J. ANGUS ◽  
M. D. GALE

The Rht-B1b, Rht-D1b and Rht-B1c alleles for reduced height in wheat (the Norin 10 and Tom Thumb dwarfing genes previously known as Rht1, Rht2 and Rht3) were exploited in combinations to generate a near-continuous range of plant heights, from 53 cm to 123 cm, amongst near-isogenic homozygotes and F1 hybrids. Pleiotropic yield effects of Rht genes were measured in both homozygous (intravarietal) and heterozygous (intervarietal) genetic backgrounds. Heterosis due to overdominance of Rht genes was detected among intravarietal hybrids. The effects of heterozygosity at other genetic loci (mean dominance) were determined, independently of Rht effects, from comparisons between intravarietal and intervarietal F1 hybrids.Genotypes of intermediate plant heights gave maximum yields, in agreement with other trials of the homozygous lines, so that heterosis (hybrid exceeding best parent) for Rht yield effects was observed in crosses between tall and dwarf isogenic pairs. This heterosis combined additively with increased mean weight per grain in intervarietal crosses, generating the highest overall grain yields in hybrids with semi-dwarf stature in heterozygous genetic backgrounds. The Rht-B1c allele showed single-gene overdominance for grain yield, also the production of alpha-amylase in ripening grains of Maris Huntsman was effectively inhibited in the Rht-B1a/c intravarietal hybrid. The Rht-B1c allele thus offers advantages for both grain yield and grain quality in the heterozygous condition and should be considered as an alternative to the conventional semi-dwarfing genes Rht-B1b and Rht-D1b for F1 varieties in environments conductive to preharvest sprouting.


Foods ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 76 ◽  
Author(s):  
Chang Park ◽  
Nam Kim ◽  
Jong Park ◽  
Sook Lee ◽  
Jong-Won Lee ◽  
...  

In this study, we investigated optimal light conditions for enhancement of the growth and accumulation of glucosinolates and phenolics in the sprouts of canola (Brassica napus L.). We found that the shoot lengths and fresh weights of red light-irradiated sprouts were higher than those of sprouts exposed to white, blue, and blue + red light, whereas root length was not notably different among red, blue, white, and blue + red light treatments. The accumulations of total glucosinolates in plants irradiated with white, blue, and red lights were not significantly different (19.32 ± 0.13, 20.69 ± 0.05, and 20.65 ± 1.70 mg/g dry weight (wt.), respectively). However, sprouts exposed to blue + red light contained the lowest levels of total glucosinolates (17.08 ± 0.28 mg/g dry wt.). The accumulation of total phenolic compounds was the highest in plants irradiated with blue light (3.81 ± 0.08 mg/g dry wt.), 1.33 times higher than the lowest level in plants irradiated with red light (2.87 ± 0.05 mg/g dry wt.). These results demonstrate that red light-emitting diode (LED) light is suitable for sprout growth and that blue LED light is effective in increasing the accumulation of glucosinolates and phenolics in B. napus sprouts.


Plants ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 904 ◽  
Author(s):  
Zhong-Wei Zhang ◽  
Yi-Ying Dong ◽  
Ling-Yang Feng ◽  
Zong-Lin Deng ◽  
Qiang Xu ◽  
...  

Oilseed rape (Brassica napus) is a Cadmium (Cd) hyperaccumulator. However, high-level Cd at the early seedling stage seriously arrests the growth of rape, which limits its applications. Brassica juncea had higher Cd accumulation capacity, but its biomass was lower, also limiting its applications. Previous studies have confirmed that Selenium (Se) can alleviate Cd toxicity. However, the regulatory mechanism of Se in different valence states of Cd accumulation was unclear. In this study, we investigated the ameliorating effects of three Se valence states, Na2SeO4 [Se(VI)], Na2SeO3 [Se(IV)] and Se-Met [Se(II)], to Cd toxicity by physiological and biochemical approaches in hydroponically-cultured Brassica juncea and Brassica napus seedlings. Although Se treatments slightly inhibited seedling Cd concentration, it tripled or quadrupled the Cd accumulation level per plant, because dry weight increased about four times more with Se and Cd application than with Cd treatment alone. Among the different valence states of Se, Se(II) had the most marked effect on reducing Cd toxicity as evidenced by decreased growth inhibition and Cd content. The application of Se(II) was effective in reducing Cd-induced reactive oxygen species accumulation, and promoted the antioxidant enzyme activity and photosynthesis of both Brassica species. In addition, Se(II) treatment increased the concentrations of Cd in the cell wall and soluble fractions, but the Cd concentration in the organelle part was reduced.


Agronomy ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1788
Author(s):  
Alejandro Jiménez-Gómez ◽  
Zaki Saati-Santamaría ◽  
Martin Kostovcik ◽  
Raúl Rivas ◽  
Encarna Velázquez ◽  
...  

Rapeseed (Brassica napus L.) is an important crop worldwide, due to its multiple uses, such as a human food, animal feed and a bioenergetic crop. Traditionally, its cultivation is based on the use of chemical fertilizers, known to lead to several negative effects on human health and the environment. Plant growth-promoting bacteria may be used to reduce the need for chemical fertilizers, but efficient bacteria in controlled conditions frequently fail when applied to the fields. Bacterial endophytes, protected from the rhizospheric competitors and extreme environmental conditions, could overcome those problems and successfully promote the crops under field conditions. Here, we present a screening process among rapeseed bacterial endophytes to search for an efficient bacterial strain, which could be developed as an inoculant to biofertilize rapeseed crops. Based on in vitro, in planta, and in silico tests, we selected the strain Pseudomonas brassicacearum CDVBN10 as a promising candidate; this strain produces siderophores, solubilizes P, synthesizes cellulose and promotes plant height in 5 and 15 days-post-inoculation seedlings. The inoculation of strain CDVBN10 in a field trial with no addition of fertilizers showed significant improvements in pod numbers, pod dry weight and shoot dry weight. In addition, metagenome analysis of root endophytic bacterial communities of plants from this field trial indicated no alteration of the plant root bacterial microbiome; considering that the root microbiome plays an important role in plant fitness and development, we suggest this maintenance of the plant and its bacterial microbiome homeostasis as a positive result. Thus, Pseudomonas brassicacearum CDVBN10 seems to be a good biofertilizer to improve canola crops with no addition of chemical fertilizers; this the first study in which a plant growth-promoting (PGP) inoculant specifically designed for rapeseed crops significantly improves this crop’s yields in field conditions.


2006 ◽  
Vol 46 (8) ◽  
pp. 1101 ◽  
Author(s):  
M. Hornitzky ◽  
A. Ghalayini

Food or ingredients labelled as genetically modified (GM) contain either new genetic material or protein as a result of genetic modification. In Australia, a 1% threshold, below which labelling is not required, exists for the unintended presence of GM material in non-GM foods. The canola pollen content by dry weight in a range of canola honey samples from diverse geographical areas in Australia was determined to be 0.2 ± 0.12%, well below the 1% threshold. Two GM canola honey samples sourced from Canada contained 0.19 and 0.24% of canola pollen. This work indicates honey derived from GM canola crops will not need to be labelled as a GM food.


2012 ◽  
Vol 2012 ◽  
pp. 1-10
Author(s):  
Arijit Pal ◽  
Devashish Chandra Sinha ◽  
Neelkamal Rastogi

The abundance patterns of two insects,Gerris spinolaeandBrachydeutera longipes, were found to be affected by abiotic aquatic factors including free carbon dioxide, dissolved oxygen, BOD, and phosphate concentrations prevailing in four tropical freshwater ponds, three of which being anthropogenically stressed. Regression analysis between each individual-independent water quality variable and insect abundance demonstrated a significant positive correlation in each case betweenB. longipesabundance and BOD, phosphate, free CO2, and algae dry weight, while a significant negative correlation of each of these variables was found withGerris spinolaeabundance. Moreover, a significant negative correlation ofB. longipesabundance was calculated with dissolved oxygen concentration, whileG. spinolaeabundance exhibited a positive correlation with the same. Thus,G. spinolaeappears to be a pollution sensitive, effective bioindicator for healthy unpolluted ponds, whileB. longipeshas potential as a pollution-resistant insect species indicative of pollution occurrence.


Sign in / Sign up

Export Citation Format

Share Document