The effects of three total mixed rations with different concentrate to maize silage ratios and different levels of microalgae Chlorella vulgaris on in vitro total gas, methane and carbon dioxide production

2016 ◽  
Vol 155 (3) ◽  
pp. 494-507 ◽  
Author(s):  
A. E. KHOLIF ◽  
M. M. Y. ELGHANDOUR ◽  
A. Z. M. SALEM ◽  
A. BARBABOSA ◽  
O. MÁRQUEZ ◽  
...  

SUMMARYThe aim of the current study was to assess the effects of adding Chlorella vulgaris algae at different levels on in vitro gas production (GP) of three total mixed rations (TMR) with different concentrate (C): maize silage (S) ratios (25C : 75S, 50C : 50S, 75C : 25S). Chlorella vulgaris was added at 0, 20, 40 and 80 mg/g dry matter (DM) of the TMR and total gas, methane (CH4) and carbon dioxide (CO2) production were recorded after 2, 4, 6, 8, 10, 12, 24 and 48 h of incubation in three runs. Increasing concentrate portion in the TMR linearly increased the asymptotic GP and decreased the rate of GP without affecting the lag time. Addition of C. vulgaris at 20 mg/g DM to the 25C : 75S TMR increased the asymptotic GP, CH4, CO2 and GP at 48 h. Addition of C. vulgaris to the 50C : 50S TMR decreased the asymptotic GP and GP at 48 h. Higher CH4 production was observed at 48 h of incubation when C. vulgaris was included at (per g DM): 20 mg for the 25C : 75S ration, 40 mg for the 50C : 50S ration and 80 mg for the 75C : 25S ration. Inclusion of C. vulgaris linearly increased CH4 production for the 50C : 50S ration and increased CO2 production at 10 and 12 h of incubation for the 50C : 50S ration, whereas 20 and 40 mg C. vulgaris/g DM of the 75C : 25S TMR decreased CO2 production. The 25C : 75S TMR had the highest in vitro DM disappearance with C. vulgaris addition. Chlorella vulgaris addition was more effective with rations high in fibre content than those high in concentrates. It can be concluded that the optimal level of C. vulgaris addition was 20 mg/g DM for improved ruminal fermentation of the 25C : 75S TMR.

2020 ◽  
Vol 98 (Supplement_2) ◽  
pp. 55-56
Author(s):  
Noheli Gutierrez ◽  
Jamie A Boyd

Abstract A study was conducted to evaluate effects of increasing concentration of food grade glycerol on rumen environment and nutrient digestibility. Three ruminally cannulated Jersey steers were used in this study. The study was conducted from March to May 2019. Experimental design was a 3x3 Latin square with a 2wk adjustment period followed by a 1wk collection period. Diet was coastal bermudagrass hay based. Different forage types were introduced in the incubation process to evaluate digestibility. Glycerol was administered once a day at 0, 15, or 20% of DMI (dry matter intake). dNDF (digestible NDF) and dDM (digestible dry matter) was determined using an ANKOM Daisy II incubator inoculated with 200g fresh rumen fluid and incubated for 12, 24, 48 and 72 h at 39°C. Each vessel contained ground forage samples in filter bags in triplicate. After incubation, filter bags were rinsed with cold water and dried for 24h in a 55°C forced air oven. Data were analyzed using the Proc MIXED procedure of SAS version 9.4. There was no difference dNDF in effect of different levels of glycerol between forage types by diet. But a numerical tendency was observed that dNDF was decreased at 20% inclusion rates in comparison to 0 and 15% inclusion of glycerol in the diet. Neither steer nor run was significantly different in the study. However as expected digestibility over time was significantly different (P < 0.001). A significant increase was observed in DMI with the increased levels of glycerol in the diet (P = 0.003), both the 15% and 20% levels of glycerol increased in DMI in comparison to the control (0%). It appears based on these study results that digestibility may be inhibited, as levels of dietary glycerol increase in the diet and more work needs to be done to find the optimal level of glycerol supplementation.


Agriculture ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1205
Author(s):  
Musen Wang ◽  
Fujin Zhang ◽  
Xinxin Zhang ◽  
Ying Yun ◽  
Lei Wang ◽  
...  

The objective of this work was to evaluate the pH, chemical composition, minerals, vitamins, and in vitro rumen fermentation characteristics of silage prepared with lucerne, sweet maize stalk (MS), and their mixtures. Freshly chopped lucerne and MS were combined in ratios of 100:0 (M0, control), 80:20 (M20), 60:40 (M40), 40:60 (M60), 20:80 (M80), and 0:100 (M100) on a fresh matter basis. Each treatment was prepared in triplicate, and a total of eighteen silos were fermented for 65 days. After 65 days of fermentation, the pH values in M0, M20, M40, M60, M80, and M100 silages were 5.47, 4.84, 4.23, 4.13, 3.79, and 3.61, respectively. As the MS proportion in the mixtures increased, silage K, Ca, P, Na, Fe, and Cu concentrations linearly decreased (p < 0.001) and so did vitamins B5 and K1 and α-tocopherol. In vitro rumen dry matter and organic matter degradability, pH, ammonia, total volatile fatty acid, and gas production linearly decreased (p < 0.01), while neutral detergent fiber concentration linearly increased (p < 0.001), with increasing proportion of MS. The in vitro dry matter and organic matter degradability rapidly decreased when the MS percentage was ≥60%. In conclusion, the M40 silage is the most suitable for livestock utilization in local forage production considering the balance of silage pH, nutritional quality, and in vitro ruminal fermentation characteristics.


2016 ◽  
Vol 16 (2) ◽  
pp. 333-341
Author(s):  
Seyed Masoud Davoodi ◽  
Mohsen Danesh Mesgaran ◽  
Ali Reza Vakili ◽  
Reza Valizadeh ◽  
Abdollah Ghasemi Pirbalouti

Present study was conducted to investigate the effect of including plant essential oils on in vitro ruminal fermentation and microbial nitrogen synthesis of a dairy cow diet rich in concentrate. The treatments consisted of the diet alone (control; BD) as well as containing 50 and 100 μl L-1 essential oil of thyme (BDT), mint (BDM), savory (BDS), or a mixture of the essential oils at the rate of 1:1:1 (BDmix). Essential oils decreased gas production at 24, 48 and 96 h of incubation compared with that of BD. However, mint at the rate of 50 or 100 μl L-1 resulted an increase in the microbial nitrogen when compared to BD, BDS and BDT. The nitrogen content of truly undegraded residu (NDFN) content and NH3-N concentration were lower, while the dry matter digestibility was greater in the BDmix, regardless of dosage levels, as compared with the control. The inclusion of a mixture of essential oils at 50 μl L-1 to the basal diet caused intensified dry matter disappearance, in comparison to other treatments. Results showed that the synergetic effects of essential oils together in a dairy cow diet of rich in concentrate can alter rumen microbial fermentation and improve microbial protein yield.


2021 ◽  
Vol 42 (6) ◽  
pp. 3399-3414
Author(s):  
Angela Rocio Poveda-Parra ◽  
Odimári Pricila Prado-Calixto ◽  
Elzânia Sales Pereira ◽  
Fernando Luiz Massaro Junior ◽  
Larissa Nóbrega de Carvalho ◽  
...  

The objective of this study was to evaluate ingredients and diets containing increasing levels of crambe cake protein replacing soybean meal protein, with in vitro ruminal fermentation parameters using a gas production technique. Diets were formulated for feedlot lambs and contained different levels of crambe cake protein (0, 250, 500, 750, and 1000 g kg-1) replacing soybean meal protein. Corn silage was used as roughage. Carbohydrate digestion rates were estimated using the in vitro gas production technique and the cumulative gas production kinetics were analyzed using the bicompartmental logistic model. The parameters values of ruminal degradation kinetics were generated using the R statistical program with the Gauss-Newton algorithm and then subjected to analysis of variance and regression (when necessary) according to a completely randomized experimental design with five treatments and five replications. Upon carbohydrate fractionation of ingredients and experimental diets, it was observed that corn grain and corn silage presented the highest levels of total carbohydrates (TC), with values of 128.3 and 464.8 g kg-1 dry matter (DM) in fraction B2, respectively. Lower TC content was found for soybean meal and crambe cake (CC). There was a predominance of fractions A + B1 in the ingredients and experimental diets. The B2 fraction decreased in the diets with the inclusion of the CC protein, and CC presented the highest C fraction. Protein fractionation (g kg-1 DM and g kg-1 crude protein - CP), the ingredients and diets showed a higher proportion of fractions A and B1 + B2. In in vitro degradation, the diet without CC (0 g kg-1 DM) showed the highest final cumulative gas production (365.04 mL g-1 of incubated DM), while the CC presented the lowest volume (166.68 mL g-1 of incubated DM). The gas volume of non-fibrous carbohydrate fermentation and fibrous carbohydrate degradation rate exhibited a quadratic effect according increasing levels of CC (Pmax = 265.8 g kg-1 DM and Pmin = 376.3 g kg-1 DM, respectively). The lag time and final gas volume showed a decreasing linear effect with increasing levels of CC protein. The degradation rate of non-fibrous carbohydrates and the final volume of fibrous carbohydrates did not differ. Replacing soybean meal protein with CC protein at the level of 250 g kg-1 of dry matter in diets formulated for feedlot lambs leads to good profiles of ruminal fermentation kinetics with respect to the degradation of fibrous and non-fibrous carbohydrates.


2020 ◽  
Vol 24 (1) ◽  
pp. 50
Author(s):  
Rusli Fidriyanto ◽  
Roni Ridwan ◽  
Wulansih Dwi Astuti ◽  
Rohmatussolihat Rohmatussolihat ◽  
Nurul Fitri Sari ◽  
...  

Rice bran is a by-product of the rice milling process and has been well used as livestock feed. Rice bran is often adulterated with rice husk. The objective of this study was to evaluate the in vitro ruminal fermentation characteristics of rice bran with various compositions of rice husk and assess the relationship between rice husk addition and rice bran quality. The experiment was arranged in a completely randomized design with rice husk addition as a factor and three replications. Data of proximate value, gas production, ruminal degradability, and volatile fatty acid production were analyzed by analysis of variance. Moreover, significant effects of each treatment in the in vitro fermentation were further analyzed by Duncan's multiple range test (P<0.05). It was shown that the addition of rice husk to rice bran could increase acetic acid level, but it reduced potential gas production, gas production rate, organic matter and dry matter digestibility, and propionic acid level. Interestingly, the linear regression of dry matter digestibility, organic matter digestibility, and potential gas production showed the high adjusted R2 values. Moreover, this study also revealed that 10% of rice husk substitution on rice bran could significantly reduce the dry matter digestibility.


2020 ◽  
Vol 44 ◽  
Author(s):  
Rayudika Aprilia Patindra Purba ◽  
Siwaporn Paengkoum ◽  
Chalermpon Yuangklang ◽  
Pramote Paengkoum

ABSTRACT At present, there is little information regarding whether supplementation with Piper betle powder (PBP) and sunflower oil (SFO) has a synergistic effect on lowering methane emissions without negatively impacting ruminal fermentation. This study investigated the effects of PBP, supplemented either with or without SFO, on biogas release, fermentation end-products, and microorganisms in the rumen of lactating goats. The treatments were run in a completely randomized 3 × 5 factorial arrangement, whereby 0, 15, and 30 mg SFO were combined with 0, 15, 30, 45, and 60 mg PBP on a dry matter basis. The outcomes were assessed in vitro. PBP was obtained from the perennial plant Piper betle L., which is an abundant source of flavonoids and their aromatic derivatives. SFO, which reduces dietary methane emissions, was supplemented to confirm whether it interacted with other nutrients in the ruminant diet. SFO × PBP significantly (p < 0.05) decreased methane production, enhanced total volatile fatty acid concentrations, and decreased the number of rumen protozoa. We found that 15-30 mg, but not 45-60 mg, PBP combined with 0, 15, and 30 mg SFO increased (p < 0.05) total gas production (including CO2) from fermentation. However, our results suggested that at least 45 mg PBP, either alone or combined with SFO, was required to reduce ammonia-N (p < 0.05). Not all treatments affected rumen pH. In conclusion, supplementing PBP (< 30 mg), either alone or combined with SFO, has a suppressing effect on methane production while preserving an optimum rate of rumen fermentation.


2016 ◽  
Vol 46 (5) ◽  
pp. 889-894 ◽  
Author(s):  
Josimari Regina Paschoaloto ◽  
Jane Maria Bertocco Ezequiel ◽  
Marco Túlio Costa Almeida ◽  
Vanessa Ruiz Fávaro ◽  
Antonio Carlos Homem Junior ◽  
...  

ABSTRACT: The increasing availability of crude glycerin from biodiesel production has generated great stock in the industries. To solve this problem, crude glycerin is being used as an energy source to replace corn in livestock diets. This study evaluated the effects of the association of crude glycerin (10% on DM of diets) with different roughages in Nellore cattle diets on ruminal pH and ammonia, degradability, digestibility of dry matter and nutrients, and greenhouse gas production. Six ruminally cannulated Nellore steers were assigned to a 6×6 Latin square design. The following treatments were evaluated: Hydrolyzed Sugarcane associated or not with crude glycerin, Corn Silage associated or not with crude glycerin or Tifton-85 Hay associated or not with crude glycerin. Association of crude glycerin with roughages did not affect the rumen ammonia concentration and pH and dry matter intake, but reduced the intake of NDF for diets with Hydrolyzed Sugarcane and Corn Silage and reduced the digestibility of DM, OM, NDF, EE, CNF and starch and decreased the effective degradation at the rate of 8% h-1 for diets with Tifton-85 Hay. The association crude glycerin with Hydrolyzed Sugarcane reduced the production of CH4 and CO2 in mL g-1 of DM. The inclusion of crude glycerin affects differently nutrient utilization in diets with Corn Silage, Hydrolyzed Sugarcane or Tifton-85 hay. Moreover, promotes mitigation of greenhouse gases in diets with Hydrolyzed Sugarcane. Association of crude glycerin with Corn Silage in Nellore cattle diets showed better conditions of ruminal fermentation and utilization of nutrients.


2006 ◽  
Vol 34 ◽  
pp. 29-33
Author(s):  
Ú.T. Nogueira ◽  
R. M. Maurício ◽  
L. C. Gonçalves ◽  
N. M. Rodrigues ◽  
L. G. R. Pereira ◽  
...  

SummarySugar cane and maize silage samples were evaluated by the semi automated in vitro gas production technique. The associations between gas production and dry matter degradation (DMD) were analysed and high coefficients of determination were obtained for all the substrates. The results showed that particles losses could be influencing the DMD, including errors mostly when obtained before 6 hours of incubation. The gas alone could better predict the lag phase than the DMD before 6 hours of incubation.


2009 ◽  
Vol 2009 ◽  
pp. 90-90
Author(s):  
H R Lima Neto ◽  
A S Chaudhry ◽  
M M H Khan ◽  
M R Virk

Naturally grown in the vast majority of Brazilian territory, Solanum lycocarpum (SL, popularly known as wolf’s apple) can be used as alternative feed additive for ruminants. Despite its significant amount of secondary metabolites, it is known to be eaten by cattle and a specific species of wild wolf (Chrysocyon brachyurus). However the effects of these organic compounds on ruminal fermentation are still unclear and a dose-response is expected to turn a potential feedstock into an undesirable baneful aliment (Goel et al., 2008). As a result scientific investigation regarding this highly promising plant is needed to test its potential as a supplement to support sustainable livestock production systems. Thus this study compared the effects of different dried meal-like fractions (fruit, leaf, flower, root, stem) of this plant at two different levels (0.2 and 0.4 g) on the in vitro dry matter (DM) degradability (IVD) at three different times of incubation.


Sign in / Sign up

Export Citation Format

Share Document