Evaluation of Sardari bread wheat ecotypes under the rainfed cold conditions of Iran

2018 ◽  
Vol 156 (4) ◽  
pp. 504-514
Author(s):  
M. Roostaei ◽  
M. R. Jalal Kamali ◽  
E. Roohi ◽  
R. Mohammadi

AbstractPlant ecotypes represent heterogeneous, local adaptation of domesticated species and thereby provide genetic resources that meet current and new challenges for farming in drought-prone environments. A total of 536 Sardari bread wheat ecotypes, assembled from different geographical regions of Iran, were studied under rainfed cold conditions for three cropping seasons (2009–12). The main objectives were to (i) quantify the performance of the Sardari wheat ecotypes under cold rainfed conditions and (ii) provide information that would enable germplasm management and utilization in wheat breeding programmes to enhance the development of better adapted varieties for the rainfed cold conditions of Iran. All the ecotypes were evaluated for grain yield and several drought-adaptive traits. Combined analysis of variance indicated significant differences between years, ecotypes and their interaction effects for each studied trait. The Sardari wheat ecotypes showed considerable variability for the phenotypic traits and stability performance that could be utilized for wheat improvement in cold rainfed areas. Many of the Sardari wheat ecotypes exhibited a high combination of yield and stability for both drought and cold stresses, comparable to control cultivars. Multivariate analyses indicated several significant patterns among ecotypes from different geographical regions. In conclusion, selection from current Sardari wheat ecotypes may lead to yield stability and specific adaptation, which provides opportunities for this collection to be useful for genetic improvement of drought tolerance in bread wheat.

2011 ◽  
Vol 9 (3) ◽  
pp. 423-429 ◽  
Author(s):  
F. E. Yediay ◽  
E. E. Andeden ◽  
F. S. Baloch ◽  
A. Börner ◽  
B. Kilian ◽  
...  

Dwarfing genes play an important role in improving yield and adaptability of wheat cultivars in most production environments. Understanding the allelic distribution at dwarfing loci is very important for any wheat-breeding programmes. In this study, we reported the allelic constitution at microsatellite locus Xgwm261 and the two major height-reducing genes Rht-B1 and Rht-D1 among a set of 56 bread wheat cultivars and nine landraces, based on diagnostic polymerase chain reaction assays. With respect to Rht-B1, 37% of the accessions carried the dwarfing allele Rht-B1b, while at Rht-D1, only one accession carried the dwarfing allele Rht-D1b. The allelic state at Rht8 was assayed indirectly by genotyping for the linked microsatellite locus Xgwm261. About 26% of the accessions carried the 192 bp allele (linked with Rht8 gene in some cases), whereas 35 and 12% genotypes carried 165 and 174 bp allele at the microsatellite locus Xgwm261. Cultivars released from 1980 onwards increasingly carried either Rht-B1b or Rht8. This information should allow for a more rational use of this collection for the purpose of wheat improvement in Turkey.


Author(s):  
Ali Hussain Al Lawati ◽  
Saleem Kaseemsaheb Nadaf ◽  
Nadiya Abubakar Al Saady ◽  
Saleh Ali Al Hinai ◽  
Almandhar Almamari ◽  
...  

Oman is endowed with enormous diversity of important food crops that have global significance for food security and has ancient history of cultivation of bread wheat (Triticum aestivum L.) with its divergent landraces, which are useful in crop improvement. 55 indigenous Omani accessions conserved at the USDA were evaluated in the winter season (November to April) of the years 2017-2018 and 2018-2019 on loamy soil under sprinklers in augmented design with 5 check varieties in 5 replications following crop husbandry practices as per national recommendations using 9 quantitative (descriptors) and 6 qualitative traits (anthocyanin pigmentation on plant parts). The data on traits were subjected not only for PC values and D values after varimax rotation through Kaiser normalization in Principal Component Analysis (PCA) but also for Agglomerative Hierarchical Clustering (AHC). The results indicated that indigenous bread wheat accessions were significantly different (p>0.05) for all the quantitative traits except number of tillers. The multivariate analyses led to formation of four diverse clusters from PCA analyses corresponding to four quadrants of bi-plot graphs and three clusters from AHC analysis corresponding to main clades of dendrogram. The parents were selected from common accessions of distinct clusters in all the multivariate analyses for hybridization for improving characters of growth for higher yield or productivity with pigmentation on one or two plant parts useful for DUS test of varieties. The indigenous bread wheat landraces / accessions were genetically diverse and have potential for use in national crop improvement programs for earliness and higher grain productivity with distinct identification markers.


2011 ◽  
Vol 59 (3) ◽  
pp. 249-254 ◽  
Author(s):  
G. Gulyás ◽  
Z. Bognár ◽  
L. Láng ◽  
M. Rakszegi ◽  
Z. Bedő

A total of 266 Martonvásár (Mv) wheat (Triticum aestivum L.) accessions, including varieties and advanced lines, were examined using the “Perfect” molecular markers to detect the Rht-B1b (formerly Rht1) and Rht-D1b (formerly Rht2) semi-dwarfing genes. The gene Rht-B1b was detected in a total of 221 (83.5%) accessions. The Rht-D1b allele was found in fewer accessions. Overall 24 genotypes (9%) contained this allele. The analysis of the development date of the genotypes revealed that the introduction of the dwarfing genes into Martonvásár breeding programmes started in the early 1970s, and they were widely utilized from the 1980s. The Rht-B1b allele was the main source for reducing plant height, while the Rht-D1b allele played only a minor role in the Martonvásár breeding programme.Characterizing accessions using various molecular markers allows us to create a database offering relevant marker information about genotypes. Such a database could be very helpful for selection, allowing breeders to include varieties giving positive results in specific breeding programmes.


Author(s):  
Kuo-hai Yu ◽  
Hui-ru Peng ◽  
Zhong-fu Ni ◽  
Ying-yin Yao ◽  
Zhao-rong Hu ◽  
...  

Abstract This paper discusses wheat responses to heat stress (including morphological and growth, cellular structure and physiological responses) and the molecular-genetic bases of heat response in wheat (including topics on mapping quantitative trait loci related to heat tolerance and the role of functional genes in response to heat stress). The improvement of heat tolerance of wheat by comprehensive strategies is also described. It is believed that with the emphasis on genetic resource exploration and with better understanding of the molecular basis, heat tolerance will be improved during wheat breeding programmes in the future.


2020 ◽  
Vol 97 (3) ◽  
pp. 634-641
Author(s):  
Asuman Kaplan Evlice ◽  
Aliye Pehlivan ◽  
Turgay Sanal ◽  
Ayten Salantur ◽  
Gokhan Kilic ◽  
...  

Author(s):  
Baldeep Singh ◽  
G.S. Mavi ◽  
Akhil Malhotra ◽  
Neerja Sood ◽  
Ramandeeep Kaur Jhinjer ◽  
...  

Author(s):  
Rajesh Kanwar ◽  
D. K. Mehta

The study was conducted to survey and collect various French bean genotypes from the main hot spot regions of Himachal Pradesh like Shimla, Chamba, Sirmour, Kullu, Kinnaur and some areas of Mandi and Solan district. Different bean genotypes were collected in a 15-day exploration trip from various geographical regions. The collected seed samples were evaluated and characterized for intra-specific seed morpho-metric characteristics like seed coat colour, hilum colour, seed shape, hypocotyls pigmentation, cotyledon colour pubescence on hypocotyls, 100 seed weight (g), seed length (mm) and seed width (mm). The evaluated genetic material was then deposited in the short term seed bank of Department of Seed Science and Technology UHF Nauni for future correspondence. The genetic diversity found among the landraces is of great importance in the utilization of the species for food and nutrition and more importantly for genetic improvement. The study would prove a basic primary step in germplasm recognisition activity for future breeding programmes and will project the local available genetic footprints to entire agro associated enterprises for necessary consideration.


2009 ◽  
Vol 7 (1) ◽  
pp. 88-93 ◽  
Author(s):  
Umesh R. Rosyara ◽  
Amrit A. Ghimire ◽  
Sushil Subedi ◽  
Ram C. Sharma

Higher seedling vigour and greater coleoptile length are important for early establishment of wheat crops and subsequently higher grain yield in many dry environments. Seedling vigour includes those seed properties that determine the potential for rapid, uniform emergence and development of normal seedlings under a wide range of field conditions. Genotypes with the widely used gibberellic acid (GA)-insensitive dwarfing genes Rht-B1b and Rht-D1b have good partitioning and grain yield under optimal conditions, but may perform poorly under stressed conditions due to poor crop establishment. Breeding programmes are in search of GA-sensitive dwarfing genes that do not affect seedling vigour under dry conditions. This study evaluated 40 genotypes currently used in wheat breeding programmes of south Asia for seedling vigour-related traits in greenhouse and field experiments during 2006–2007 at IAAS, Rampur, Nepal. Wide variation in coleoptile length, seedling vigour, as well as sensitivity to GA was observed. Among the genotypes studied, there were positive correlations among coleoptile length, leaf width and plant height. Genotypes, SW89-5193, SW89-5422/NL251 and SW89-5422, were found to have longer coleoptile, higher seedling vigour and response to GA application. This shows a promise for their further applications in the breeding programmes.


2011 ◽  
Vol 9 (3) ◽  
pp. 439-444 ◽  
Author(s):  
C. Rodríguez-Suárez ◽  
M. C. Ramírez ◽  
A. Martín ◽  
S. G. Atienza

Triticum urartu, the A-genome donor of tetraploid and hexaploid wheats, is a potential source of novel alleles for crop improvement. A fertile amphiploid between T. urartu (2n = 2x = 14; AuAu) and durum wheat cv ‘Yavaros’ (Triticum turgidum ssp. durum; 2n = 4x = 28, AABB) was obtained as a first step to making the genetic variability of the wild ancestor available to durum wheat breeding. The amphiploid was backcrossed with ‘Yavaros’ and the offspring from this cross was selfed. A plant from this progeny (founder line) with 28 chromosomes and active x and y subunits of the Glu-A1 locus of T. urartu was selfed, which resulted in the obtaining of 98 pre-introgression lines (pre-ILs). In this work, a set of 78 wheat chromosome-specific microsatellite markers (simple sequence repeats, SSR), uniformly distributed over the A genome, was used for marker-assisted selection of T. urartu in a durum wheat background. A total of 57 SSRs allowed a clear discrimination between T. urartu and ‘Yavaros’. This set of markers was further used for characterizing the pre-ILs, identifying and defining the T. urartu introgressed regions. The applicability of these markers is discussed.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e6419 ◽  
Author(s):  
Lei Hao ◽  
Guosheng Zhang ◽  
Dongye Lu ◽  
Jianjun Hu ◽  
Huixia Jia

Salix psammophila (desert willow) is a shrub endemic to the Kubuqi Desert and the Mu Us Desert, China, that plays an important role in maintaining local ecosystems and can be used as a biomass feedstock for biofuels and bioenergy. However, the lack of information on phenotypic traits and molecular markers for this species limits the study of genetic diversity and population structure. In this study, nine phenotypic traits were analyzed to assess the morphological diversity and variation. The mean coefficient of variation of 17 populations ranged from 18.35% (branch angle (BA)) to 38.52% (leaf area (LA)). Unweighted pair-group method with arithmetic mean analysis of nine phenotypic traits of S. psammophila showed the same results, with the 17 populations clustering into five groups. We selected 491 genets of the 17 populations to analyze genetic diversity and population structure based on simple sequence repeat (SSR) markers. Analysis of molecular variance (AMOVA) revealed that most of the genetic variance (95%) was within populations, whereas only a small portion (5%) was among populations. Moreover, using the animal model with SSR-based relatedness estimated of S. psammophila, we found relatively moderate heritability values for phenotypic traits, suggesting that most of trait variation were caused by environmental or developmental variation. Principal coordinate and phylogenetic analyses based on SSR data revealed that populations P1, P2, P9, P16, and P17 were separated from the others. The results showed that the marginal populations located in the northeastern and southwestern had lower genetic diversity, which may be related to the direction of wind. These results provide a theoretical basis for germplasm management and genetic improvement of desert willow.


Sign in / Sign up

Export Citation Format

Share Document