scholarly journals Oat (Avena sativa) yield and grain fill responses to varying agronomic and weather factors

Author(s):  
C. P. McCabe ◽  
J. I. Burke

Abstract Factorial experiments were carried out on spring- and winter-sown oat crops in Ireland in 2016–2019 to identify plant responses in yield formation and grain filling procedures. Two cultivars (Husky and Keely), three seed rates (250, 350 and 450 seeds/m2), six applied nitrogen (N) rates (40, 70, 100, 130, 160 and 190 kg N/ha) with a plant growth regulator (PGR) were examined in spring and winter sowings, using the same cultivars at five rates of applied N (80, 110, 140, 170 and 200 kg N/ha). The applied N rate and seed rate significantly (P < 0.05) modified the yield components determining grains/m2 in spring- and winter-sown crops with increases in panicle number of key importance. Increases were also observed in the proportion of primary grain by weight (0.9–1.6%) and number (0.7–1.4%) ratios in spring-sown crops in response to applied N rate, with winter-sown crops exhibiting a more consistent pattern of grain fill. Seed rate and PGR application had minor effects on yield components and panicle conformation. Grain fill procedures played an important role in the maximization of grain yield under seasonal conditions. Significant positive correlations were observed between the number of aborted grain sites and yield under drought conditions (0.22), with negative associations observed in near-optimal conditions (−0.22 to −0.41). Agronomic effects on grain site abortion were minimal in comparison with seasonal effects. In seasons characterized by cool, consistent conditions, grain yield was maximized by the utilization of all available grain sites. Where assimilate shortages were encountered during grain fill the abortion of grains sites was positively associated with grain yield.

2015 ◽  
Vol 154 (3) ◽  
pp. 367-382 ◽  
Author(s):  
Y. M. N. ADEDZE ◽  
W. C. HE ◽  
A. D. SAMOURA ◽  
F. HUANG ◽  
Y. N. TONDI ◽  
...  

SUMMARYDevelopment of partial inter-specific hybrid (PIH) rice is a promising approach for exploiting inter-specific heterosis between Oryza glaberrima and Oryza sativa. In the present study, the relationship between genetic distance (GD) of parental lines and yield performance of the PIHs was assessed using partial diallel crosses between three indica male sterile lines and 14 introgression lines (ILs) with different fragments of O. glaberrima genes. Twenty two out of the 42 PIHs expressed positive heterobeltiosis (i.e., the Fl hybrid showed superiority over the better parent in the target trait) for panicle number, spikelet number, thousand grain weight and grain yield/plant. The proportion of O. glaberrima genome in the ILs ranged from 0·03 to 0·41, as revealed by 16 informative simple sequence repeat markers. Significant positive correlations were found between the proportion of O. glaberrima genome of the ILs and the GD between the ILs and the three different female parents. Heterosis of spikelet number per panicle in the hybrids was positively proportional with the O. glaberrima genome content of the parental ILs, while that of fertile grain percentage was negatively proportional to the O. glaberrima genome proportion. On average, the PIHs with higher grain yield and highest heterobeltiosis were obtained from the ILs carrying between 0·15 and 0·30 of O. glaberrima genome. The results indicated that a small proportion (<0·15) of the O. glaberrima genome in the ILs might limit heterosis expression of spikelet number per panicle, while a very large proportion (>0·30) of the O. glaberrima genome decreased the grain filling percentage in the PIHs, thus an intermediate range of O. glaberrima genome proportion should be more suitable for breeding heterotic PIHs. The exploitation of inter-specific heterosis between O. glaberrima and O. sativa has potential value for heterotic breeding in rice.


2000 ◽  
Vol 134 (4) ◽  
pp. 379-390 ◽  
Author(s):  
R. CARRERES ◽  
J. SENDRA ◽  
R. BALLESTEROS ◽  
J. GARCÍA DE LA CUADRA

A field study was conducted to investigate the agronomic performance, nitrogen (N) efficiencies, yield components and yield of rice in Spain for different nitrogen treatments. The experimental variants were six preflood N rates (0, 50, 75, 100, 125 and 150 kg/ha) and three topdressing patterns: (i) non- topdressed, (ii) topdressed with 50 kg N/ha at mid-tillering stage (MT) and (iii) topdressed at panicle initiation stage (PI). The N status of the plant was measured at different growing stages to determine whether a chlorophyll meter would be useful in making N sidedress recommendations. The results showed that grain yield increased with increasing amounts of preflooding N fertilizers up to 100 kg N/ha. The main effect was on panicle number per unit ground area. The effect of additional N supply on yield components and grain yield depended on application timing. Split applications of N did not improve the agronomic efficiency but reduced days to maturity and lodging and increased the harvest index value. Split applications increased grain yield when the total N rate was 150 kg/ha with the second supply at PI. There was a significant but not very good relationship between N content and chlorophyll content (SPAD) values. The regression equation differed significantly depending on growth stage. The SPAD value may determine the need for N topdressing at MT stage, but not at PI. However, the relationship between SPAD value and the rice yield increase from N topdressing application was not very good.


2019 ◽  
Vol 20 (20) ◽  
pp. 5241 ◽  
Author(s):  
Kiyoon Kang ◽  
Yejin Shim ◽  
Eunji Gi ◽  
Gynheung An ◽  
Nam-Chon Paek

Exploring genetic methods to improve yield in grain crops such as rice (Oryza sativa) is essential to help meet the needs of the increasing population. Here, we report that rice ONAC096 affects grain yield by regulating leaf senescence and panicle number. ONAC096 expression increased rapidly in rice leaves upon the initiation of aging- and dark-induced senescence. Two independent T-DNA insertion mutants (onac096-1 and onac096-2) with downregulated ONAC096 expression retained their green leaf color during natural senescence in the field, thus extending their photosynthetic capacity. Reverse-transcription quantitative PCR analysis showed that ONAC096 upregulated genes controlling chlorophyll degradation and leaf senescence. Repressed OsCKX2 (encoding cytokinin oxidase/dehydrogenase) expression in the onac096 mutants led to a 15% increase in panicle number without affecting grain weight or fertility. ONAC096 mediates abscisic acid (ABA)-induced leaf senescence by upregulating the ABA signaling genes ABA INSENSITIVE5 and ENHANCED EM LEVEL. The onac096 mutants showed a 16% increase in grain yield, highlighting the potential for using this gene to increase grain production.


2017 ◽  
Vol 53 (No. 3) ◽  
pp. 107-113
Author(s):  
M. Joudi ◽  
A. Ahmadi ◽  
V. Mohammadi

This study investigated changes in stem and spike characteristics resulting from breeding in Iranian wheat cultivars, and their relationship with grain yield. Eighty-one wheat cultivars released between 1930 and 2006 were examined under well-watered (WW) and terminal drought stress (DS) conditions in Karaj during 2007–2008 and 2008–2009 and under WW condition at Parsabad in Moghan region during 2010–2011. A genetic improvement over time in stem specific weight (SSW) along with significant positive correlations between this trait and grain yield were found at Karaj under DS conditions and at Parsabad, suggesting that SSW could be used as an indirect selection criterion for yield in these environments. Time-dependent changes in spike dry weight showed that the magnitude of partitioned photoassimilates to the spike during the phase anthesis – 16 days after anthesis (16 DAA) was not changed by breeding. However, during the 16 DAA ‒ maturity phase, modern cultivars had more photoassimilates allocated to the spike than the old ones. This suggests that the sink is more limited during early grain growth than during the end of grain filling. 


2021 ◽  
Vol 22 (1) ◽  
pp. 1
Author(s):  
Nurwulan Agustiani ◽  
Sujinah Sujinah ◽  
Indrastuti Apri Rumanti

<p class="abstrakinggris"><span lang="EN-US">Stagnant flooding (SF) stress has contributed decreasing rice production in Indonesia. The study aimed to explore critical variables of rice growth that contribute to the decreasing grain yield under SF conditions and a common irrigation system (control). The experiment was arranged in a complete randomized block design with four replications to test 10 rice genotypes (Inpari 30 Ciherang Sub-1, Inpara 3, Inpara 4, Inpara 8, IRRI119, IRRI154, IR42, IR14D121, IR14D157, and Tapus). The water depth was managed according to the farmer’s practices for control, while for SF plots the standing water depth was gradually increased from 35 days after transplanting and was maintained at 50 cm until harvest. Results showed that plant height, tillering ability, leaf greenness, panicle number per hill and grain filling percentage were critical growth variables that affect grain yield at optimal conditions. The yield of the 10 genotypes decreased by 25–50% under SF conditions. Inpara 3 had the stable yield in those two watering conditions. Therefore, it could be used as a check variety for SF condition. Inpara 9 and IRRI119 experienced decreased yield of more than 50% under SF conditions. The key factors determining the decreased yield were tillering ability and green leaf level. Optimization of the two variables at SF conditions will largely determine rice yield associated with panicle number per hill and grain number per panicle. Results of the study are useful as preliminary recommendations for designing new variety and cultivation techniques to reduce the impact of SF stress on rice yield.</span></p>


1988 ◽  
Vol 68 (4) ◽  
pp. 947-955 ◽  
Author(s):  
G. K. WALKER ◽  
M. H. MILLER ◽  
M. TOLLENAAR

Experiments were conducted from 1983 to 1985 to test the hypothesis that rate of dry matter accumulation by maize (Zea mays L.) during grain filling can be enhanced by an increase in assimilate demand for grain filling (i.e., sink strength).The sink strength of maize plants grown in an outdoor hydroponic system was varied independently of the source strength by manipulating the plant spacing during the period in which final kernel number is established. The crop growth rate during grain filling, the dry matter of leaves, stems, ears and roots, and grain yield components were determined. In all 3 yr the crop growth rate during grain filling of plants that had been growing at a 20 000 plants ha−1 spacing for variable periods and were returned to the control density of 80 000 plants ha−1 at the start of the grain-filling period was lower than that of plants grown continuously at a spacing of 80 000 plants ha−1. In 1985, plants grown at 20 000 plants ha−1 from 3 wk preanthesis until 2 wk postanthesis and at 80 000 plants ha−1 thereafter had 50% more kernels per plant than the control plants. However, the net photosynthesis during grain filling was not increased; in fact it was somewhat lower. Final grain yield was not significantly different, mainly due to greater translocation from the stems to the grain in the spaced plants than in the controls. These studies indicate that maize growing in a nonlimiting below-ground environment is not sink limited. Hence adding sink capacity by maintaining kernel number while increasing plant density or by adding more kernels per plant would not appear to be a promising route for raising the yield potential.Key words: Sink strength, hydroponics, plant spacing, kernel number, yield components


2020 ◽  
Vol 34 (5) ◽  
pp. 666-674 ◽  
Author(s):  
Elizabeth Karn ◽  
Teresa De Leon ◽  
Luis Espino ◽  
Kassim Al-Khatib ◽  
Whitney Brim-DeForest

AbstractWeedy rice is an emerging problem of cultivated rice in California. Infestations of weedy rice in cultivated rice result in yield loss and reduced grain quality. In this study, we aimed to evaluate growth and yield components of a widely grown cultivated rice variety in California in response to weedy rice competition. Greenhouse competition experiments in an additive design were conducted in 2017 and 2018 to determine the growth and yield components of ‘M-206’ rice and five weedy rice biotypes found in California at varying weed densities. M-206 rice initially grew at a faster relative growth rate of 0.53 cm−1 wk−1 under competitive conditions compared with 0.47 cm−1 wk−1 in the absence of weedy rice, but absolute and relative growth rates declined more rapidly under competitive conditions as plants approached maturity. At harvest, M-206 plant height was reduced 13% under competitive conditions, and M-206 tiller number was reduced 23% to 49%, depending on the weedy rice biotype it was competing with. Except for 100-grain weight, the growth traits and grain yield components of M-206 rice were reduced with increasing density of weedy rice. At the highest weed density measured, 40 plants m−2, M-206 rice had yield losses of 69% grain yield plant−1, 69% panicle weight, 59% fresh and dry biomass, 55% grain yield panicle−1, and 54% panicle number. The five evaluated weedy rice biotypes varied widely in early growth rates, height, biomass production, and grain yield, indicating differing competitive strategies. Most weedy rice biotypes produce plants with greater plant height, tiller number, panicle number, and above- and below-ground biomass compared with cultivated rice. Weedy rice biotypes produced 45% to 57% higher grain yield per plant than M-206 rice under competitive conditions.


2008 ◽  
Vol 59 (2) ◽  
pp. 189 ◽  
Author(s):  
G. F. Liu ◽  
J. Yang ◽  
H. M. Xu ◽  
Y. Hayat ◽  
J. Zhu

Grain yield (GY) of rice is a complex trait consisting of several yield components. It is of great importance to reveal the genetic relationships between GY and its yield components at the QTL (quantitative trait loci) level for multi-trait improvement in rice. In the present study, GY per plant in rice and its 3 yield component traits, panicle number per plant (PN), grain number per panicle (GN), and 1000-grain weight (GW), were investigated using a doubled-haploid population derived from a cross of an indica variety IR64 and a japonica variety Azucena. The phenotypic values collected from 2 cropping seasons were analysed by QTLNetwork 2.0 for mapping QTLs with additive (a) and/or additive × environment interaction (ae) effects. Furthermore, conditional QTL analysis was conducted to detect QTLs for GY independent of yield components. The results showed that the general genetic variation in GY was largely influenced by GN with the contribution ratio of 29.2%, and PN and GN contributed 10.5% and 74.6% of the genotype × environment interaction variation in GY, respectively. Four QTLs were detected with additive and/or additive × environment interaction effects for GY by the unconditional mapping method. However, for GY conditioned on PN, GN, and GW, 6 additional loci were identified by the conditional mapping method. All of the detected QTLs affecting GY were associated with at least one of the 3 yield components. The results revealed that QTL expressions of GY were contributed differently by 3 yield component traits, and provide valuable information for effectively improving GY in rice.


Agronomy ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2551
Author(s):  
Sebastian Schwabe ◽  
Sabine Gruber ◽  
Wilhelm Claupein

Oilseed rape production is under pressure due to a limited availability of herbicides. Therefore, the performance in terms of management intensity (MI) and herbicide strategy (HS) and the involved yield formation was evaluated in a two-year Clearfield® oilseed rape field experiment. Furthermore, weed density and weed composition were also investigated. The variants of MI were standard sowing density (StS; seed rate: 50 seeds m−2, primary tillage: plow, row width: 12 cm), reduced sowing density (RD; seed rate: 25 seeds m−2, primary tillage: plow, row width: 50 cm), and strip-till (ST; seed rate: 25 seeds m−2, primary tillage: strip tillage, row width: 50 cm). The variants of HS were preemergence strategy (PES; application of dimethachlor, napropamide, clomazone in preemergence and application of prapaquizafop in postemergence) and Clearfield® strategy (CLS; application of imazamox, quinmerac in preemergence, no postemergence herbicide application). In the first year of the trial, there were no interactions between the factors in terms of grain yield. Grain yield in StS was 3.85 t and 5.2% significantly lower than in ST, and the value of RD was not significantly different from StS and ST. Grain yield in CLS was 3.7 t and 2.7% lower than in PES. In the second year of the trial, the grain yield in ST CLS was significantly lower, and there were no significant differences between the other variants. Higher weed emergence was observed in CLS RD (2.7 to 4 times higher weed density compared to PES RD) and CLS ST (2.8 to 4.5 times higher weed density compared to PES ST). No significant differences existed between StS PES and StS CLS in both trial years. The Clearfield® system offers significant advantages in the control of cruciferous weeds. Although these did not occur on the trial fields, the Clearfield® system in this study showed to be an alternative to the more common pre-emergence system, especially with regard to the parameter grain yield.


Sign in / Sign up

Export Citation Format

Share Document