The effects of non-esterified fatty acids and β-hydroxybutyrate on the hepatic CYP2E1 in cows with clinical ketosis

2019 ◽  
Vol 86 (1) ◽  
pp. 68-72
Author(s):  
Zhicheng Peng ◽  
Xiaobing Li ◽  
Zhe Wang ◽  
Guowen Liu ◽  
Xinwei Li

AbstractDairy cows with ketosis display severe oxidative stress as well as high blood concentrations of non-esterified fatty acids (NEFA) and β-hydroxybutyrate (BHB). Cytochrome P4502E1 (CYP2E1) plays an important role in the induction of oxidative stress. The aim of this study was to investigate CYP2E1 expression and activity in the liver of clinically ketotic cows (in vivo) and the effects of NEFA and BHB on CYP2E1 expression and activity in hepatocytes (in vitro). Dairy cows with clinical ketosis exhibited a low blood concentration of glucose but high concentrations of NEFA and BHB. Hepatic mRNA, protein expression, and activity of CYP2E1 were significantly higher in cows with clinical ketosis than in control cows. In vitro, both NEFA and BHB treatment markedly up-regulated the mRNA and protein expressions as well as activity of CYP2E1 in cow hepatocytes. Taken together, these results indicate that high levels of NEFA and BHB significantly up-regulate the expression and activity of hepatic CYP2E1, and may be influential in the induction of oxidative stress in cows with clinical ketosis.

2005 ◽  
Vol 2005 ◽  
pp. 36-36
Author(s):  
E. Doran ◽  
J. D. McGivan ◽  
M.F. Whittington ◽  
J. D. Wood

Boar taint is off-odours in cooked pork from uncastrated male pigs. It is caused by an excessive accumulation of skatole and androstenone in backfat. Accumulation of skatole is due to a low expression and activity of hepatic enzyme CYP2E1. The mechanism of androstenone accumulation is not clear. It could be due to low activity and expression of 3ß-hydroxysteroid dehydrogenase (HSD), an enzyme metabolising androstenone in liver. On the basis of our previous in vivo experiments with castrated animals we suggest that accumulation of skatole is regulated by androstenone. Castrated pigs manifest lower levels of skatole and androstenone and higher CYP2E1 expression. We hypothesise that high levels of androstenone inhibits CYP2E1 expression and hence, reduces the rate of hepatic skatole metabolism. The aims of the present study were (i) to investigate the expression of androstenone-metabolising enzyme HSD in liver of pigs with high and low skatole and androstenone deposition; (ii) to investigate the effect of androstenone on expression of the skatole-metabolising enzyme CYP2E1 in vitro (in cell culture).


2019 ◽  
Vol 8 (5) ◽  
pp. 493-505 ◽  
Author(s):  
Arpna Sharma ◽  
Vijay Simha Baddela ◽  
Frank Becker ◽  
Dirk Dannenberger ◽  
Torsten Viergutz ◽  
...  

High-yielding dairy cows postpartum face the challenge of negative energy balance leading to elevated free fatty acids levels in the serum and follicular fluid thus affecting the ovarian function. Here, we investigated effects of physiological concentrations of palmitic acid (PA), stearic acid (SA) and oleic acid (OA) on the viability, steroid production and gene expression in a bovine granulosa cell (GC) culture model. Treatment with individual and combined fatty acids increased the CD36 gene expression, while no significant apoptotic effects were observed. Both PA and SA significantly upregulated the expression of FSHR, LHCGR, CYP19A1, HSD3B1, CCND2 and increased 17β-estradiol (E2) production, while OA downregulated the expression of these genes and reduced E2. Interestingly, STAR was equally downregulated by all fatty acids and combination treatment. E2 was significantly reduced after combination treatment. To validate the effects of OA, in vivo growing dominant follicles (10–19 mm) were injected with bovine serum albumin (BSA) with/without conjugated OA. The follicular fluid was recovered 48 h post injection. As in our in vitro model, OA significantly reduced intrafollicular E2 concentrations. In addition, expression of CD36 was significantly up- and that of CYP19A1 and STAR significantly downregulated in antral GC recovered from aspirated follicles. The ovulation rates of OA-injected follicles tended to be reduced. Our results indicate that elevated free fatty acid concentrations specifically target functional key genes in GC both in vitro and in vivo. Suggestively, this could be a possible mechanism through which elevated free fatty acids affect folliculogenesis in dairy cows postpartum.


1978 ◽  
Vol 40 (1) ◽  
pp. 125-131 ◽  
Author(s):  
J. D. Edwards-Webb ◽  
S. Y. Thompson

1. The lipolysis of cow's milk fat by salivary lipase (EC 3.1.1.3) in the preruminant calf has been studied in vitro by a simulated abomasal digestion, and also in vivo by examining the abomasal effluent collected over 12 h after giving whole milk to a calf.2. In the in vitro experiment the liquid drained from the clot contained a higher proportion of short-chain fatty acids than the abomasal effluent in the in vivo experiment. This was considered to indicate the absorption of short-chain free fatty acids from within the abomasum.3. Preferential release of short-chain fatty acids both in vitro and in vivo was observed.4. The outflow of butyric acid from the abomasum of the calf was initially rapid, but had levelled off at approximately 6 h, whereas the outflow of a typical long-chain fatty acid (palmitic) was fairly constant over the 12 h.Butyric acid predominated in the free fatty acids of abomasal effluent 0.5 h after feeding (668 mmol/mol total free fatty acids) but had become a minor component by 12 h (15 mmol/mol total free fatty acids).5. The mean amounts of free and esterified fatty acids (mmol/mol fatty acid ingested) present in the abomasal effluent from the 12 h collection period were: triglyceride 465, diglyceride 215, monoglyceride 68, free fatty acid 252. These values showed that only one-third of esterified fatty acids ingested are lipolysed to absorbable products by salivary lipase.


2018 ◽  
Vol 48 (2) ◽  
pp. 827-837 ◽  
Author(s):  
Yuming Zhang ◽  
Xiaobing Li ◽  
Haolong Zhang ◽  
Zhibo Zhao ◽  
Zhicheng Peng ◽  
...  

Background/Aims: Dairy cows with clinical ketosis display a negative energy balance and high blood concentrations of non-esterified fatty acids (NEFAs), the latter of which is an important pathological factor of ketosis in cows. The aims of this study were to investigate the inflammatory status of ketotic cows and to determine whether and through what underlying mechanism high levels of NEFAs induce an inflammatory response. Methods: Proinflammatory factors and the nuclear factor kappa B (NF-κB) signaling pathway were evaluated in neutrophils from clinical ketotic and control cows, using methods including western blotting, quantitative real-time polymerase chain reaction, and enzyme-linked immunosorbent assay. In vitro, the effects of NEFAs on the NF-κB signaling pathway in cow neutrophils were also evaluated using the above experimental techniques. Results: Ketotic cows displayed low blood concentrations of glucose and high blood NEFA and β-hydroxybutyrate concentrations. Importantly, Toll-like receptor 2 (TLR2) and TLR4 expression and IκBα and NF-κB p65 phosphorylation levels in neutrophils (PMNs) were significantly higher in ketotic cows than in control cows, indicating over-activation of the TLR2/4-induced NF-κB inflammatory pathway in PMNs in ketotic cows. The blood concentrations of the inflammatory cytokines interleukin-6 (IL-6), IL-1β, and tumor necrosis factor-α (TNF-α) were also significantly increased in ketotic cows. Interestingly, we found that NEFAs were positively correlated with proinflammatory cytokines. In vitro, after pharmacological inhibition of TLR2 and TLR4 expression in cow neutrophils, TLR2 and TLR4 expression was significantly decreased, and the phosphorylation level of NF-κB p65 was also reduced. Cow neutrophils were treated with different concentrations of NEFAs and pyrrolidine dithiocarbamate (PDTC; an NF-κB inhibitor). High concentrations of NEFAs (0.5 and 1 mM) significantly increased TLR2 and TLR4 expression, IκBα and NF-κB p65 phosphorylation levels, NF-κB p65 transcriptional activity, and IL-6, IL-1β, and TNF-α synthesis in cow neutrophils. The inhibition of NF-κB by PDTC suppressed the NEFA-induced synthesis of proinflammatory cytokines. Conclusions: High concentrations of NEFAs can over-activate the TLR2/4-mediated NF-κB signaling pathway to induce the over-production of proinflammatory cytokines, thereby increasing inflammation in cows with clinical ketosis.


Animals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1631
Author(s):  
Tae-Bin Kim ◽  
Jae-Sung Lee ◽  
Seung-Yeol Cho ◽  
Hong-Gu Lee

The aim of the present study was to evaluate the effects of adding dietary rumen-protected microencapsulated supplements into the ruminal fluid on the milk fat compositions of dairy cows. These supplements comprised linseed oil, vitamin E, rosemary extract, and hydrogenated palm oil (MO; Microtinic® Omega, Vetagro S.p.A, Reggio Emilia, Italy). For in vitro ruminal fermentation, Holstein–Friesian dairy cows each equipped with a rumen cannula were used to collect ruminal fluid. Different amounts (0%, 1%, 2%, 3%, 4%, and 5%) of MO were added to the diets to collect ruminal fluids. For the in vivo study, 36 Holstein–Friesian dairy cows grouped by milk yield (32.1 ± 6.05 kg/d/head), days in milk (124 ± 84 d), and parity (2 ± 1.35) were randomly and evenly assigned to 0.7% linseed oil (LO; as dry matter (DM) basis) and 2% MO (as DM basis) groups. These two groups were fed only a basal diet (total mixed ration (TMR), silage, and concentrate for 4 weeks) (period 1). They were then fed with the basal diet supplemented with oil (0.7 LO and 2% MO of DM) for 4 weeks (period 2). In the in vitro experiment, the total gas production was found to be numerically decreased in the group supplemented with 3% MO at 48 h post in vitro fermentation. A reduction of total gas production (at 48 h) and increase in ammonia concentration (24 h) were also observed in the group supplemented with 4% to 5% MO (p < 0.05). There were no differences in the in vitro fermentation results, including pH, volatile fatty acids, or CH4 among groups supplemented with 0%, 1%, and 2% MO. The results of the in vitro study suggest that 2% MO is an optimal dosage of MO supplementation in cows’ diets. In the in vivo experiment, the MO supplement more significantly (p < 0.01) increased the yield of total w3 fatty acids than LO (9.24 vs. 17.77 mg/100 g milk). As a result, the ratio of total omega-6 to omega-3 fatty acids was decreased (p < 0.001) in the MO group compared to that in the LO group (6.99 vs. 3.48). However, the milk yield and other milk compositions, except for milk urea nitrogen, were similar between the two groups (p > 0.05). Collectively, these results suggest that the dietary supplementation of 2% MO is beneficial for increasing omega-3 fatty acids without any negative effects on the milk yield of dairy cows.


2008 ◽  
Vol 416 (2) ◽  
pp. 307-315 ◽  
Author(s):  
Kazuhiro Hasegawa ◽  
Shinobu Tsutsumi-Yasuhara ◽  
Tadakazu Ookoshi ◽  
Yumiko Ohhashi ◽  
Hideki Kimura ◽  
...  

Aβ2M (β2-microglobulin-related) amyloidosis is a frequent and serious complication in patients on long-term dialysis. Partial unfolding of β2-m (β2-microglobulin) may be essential to its assembly into Aβ2M amyloid fibrils in vivo. Although SDS around the critical micelle concentration induces partial unfolding of β2-m to an α-helix-containing aggregation-prone amyloidogenic conformer and subsequent amyloid fibril formation in vitro, the biological molecules with similar activity under near-physiological conditions are still unknown. The effect of various NEFAs (non-esterified fatty acids), which are representative anionic amphipathic compounds in the circulation, on the growth of Aβ2M amyloid fibrils at a neutral pH was examined using fluorescence spectroscopy with thioflavin T, CD spectroscopy, and electron microscopy. Physiologically relevant concentrations of laurate, myristate, oleate, linoleate, and mixtures of palmitate, stearate, oleate and linoleate, induced the growth of fibrils at a neutral pH by partially unfolding the compact structure of β2-m to an aggregation-prone amyloidogenic conformer. In the presence of human serum albumin, these NEFAs also induced the growth of fibrils when their concentrations exceeded the binding capacity of albumin, indicating that the unbound NEFAs rather than albumin-bound NEFAs induce the fibril growth reaction in vitro. These results suggest the involvement of NEFAs in the development of Aβ2M amyloidosis, and in the pathogenesis of Aβ2M amyloidosis.


1983 ◽  
Vol 101 (2) ◽  
pp. 473-480 ◽  
Author(s):  
I. M. Reid ◽  
G. J. Rowlands ◽  
A. M. Dew ◽  
R. A. Collins ◽  
C. J. Roberts ◽  
...  

SUMMARYThe blood composition of 45 cows with more than 20% fat in the liver (moderate fatty liver) was compared with that of 83 cows with less than 20% fat in the liver (mild fatty liver). The cows were sampled at 1 week after calving and were from three Friesian and one Guernsey herds. Blood concentrations of non-esterified fatty acids, bilirubin and aspartate amino-transferase were significantly elevated in cows with more than 20% in the liver whereas concentrations of glucose, cholesterol, albumin and magnesium were all significantly reduced. Blood samples from cows in two of the herds were analysed for ammonia, insulin and D(-)3-hydroxybutyrate. Cows with moderate fatty liver in these two herds had significantly lower insulin concentrations and higher D(-)3-hydroxybutyrate concentrations than those with mild fatty liver. Using an equation based on blood concentrations of non-esterified fatty acids, glucose and aspartate aminotransferase it was possible to assign correctly three out of four cows to either the mild or moderate fatty liver groups.


Reproduction ◽  
2005 ◽  
Vol 130 (4) ◽  
pp. 485-495 ◽  
Author(s):  
J L M R Leroy ◽  
T Vanholder ◽  
B Mateusen ◽  
A Christophe ◽  
G Opsomer ◽  
...  

In this study concentration and composition of non-esterified fatty acids (NEFA) in follicular fluid (FF) of high-yielding dairy cows were determined during the period of negative energy balance (NEB) early post partum. NEFA were then added during in vitro maturation at concentrations measured previously in FF to evaluate their effect on the oocyte’s developmental competence. At 16 and 44 days post partum, FF of the dominant follicle and blood were collected from nine high-yielding dairy cows. Samples were analysed for NEFA concentration and composition. NEFA concentrations in FF (0.2–0.6 mmol/l) during NEB remained ± 40% lower compared with serum (0.4–1.2 mmol/l). The NEFA composition differed significantly between serum and FF with oleic acid (OA), palmitic acid (PA) and stearic acid (SA) being the predominant fatty acids in FF. Based on these results, 5115 oocytes were matured for 24 h in serum-free media with or without (negative control) the addition of 0.200 mmol/l OA, 0.133 mmol/l PA or 0.067 mmol/l SA dissolved in ethanol or ethanol alone (positive control). Matured oocytes were fertilized and cultured for 7 days in SOF medium. Addition of PA or SA during oocyte maturation had negative effects on maturation, fertilization and cleavage rate and blastocyst yield. More (late) apoptotic cumulus cells were observed in cumulus–oocyte complexes matured in the presence of SA or PA. Ethanol or OA had no effect. These in vitro results suggest that NEB may hamper fertility of high-yielding dairy cows through increased NEFA concentrations in FF affecting oocyte quality.


Sign in / Sign up

Export Citation Format

Share Document