BABE – a brush cathode discharge for thermal fluctuation measurements

2014 ◽  
Vol 81 (2) ◽  
Author(s):  
S. Ratynskaia ◽  
G. Dilecce ◽  
P. Tolias

For experimental tests of fluctuation theory in ideal plasmas and plasmas seeded with dust, the ideal environment would be that of stable quiescent plasma. In most laboratory plasmas the homogeneous state of the positive column is often unstable, rare exceptions are the so-called brush cathode discharges, proposed in the 60s, where a specially manufactured cathode allows stable operation in the abnormal glow regime and the only fluctuations present are those due the thermal motion of the particles. Such a device, the BAri Brush Electrode (BABE), has recently been built in a novel configuration that combines the advantages of the inverse design with those of the reflex geometry. The region between the two anodes is essentially field-free and extremely stable in wide range of plasma densities and collisionalities. Unprecedented low fluctuation levels of δn/n ⩽ 10−5 in He and δn/n ⩽ 5 × 10−6 in Ar discharges have been achieved.

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Martin Pullinger ◽  
Jonathan Kilgour ◽  
Nigel Goddard ◽  
Niklas Berliner ◽  
Lynda Webb ◽  
...  

AbstractThe IDEAL household energy dataset described here comprises electricity, gas and contextual data from 255 UK homes over a 23-month period ending in June 2018, with a mean participation duration of 286 days. Sensors gathered 1-second electricity data, pulse-level gas data, 12-second temperature, humidity and light data for each room, and 12-second temperature data from boiler pipes for central heating and hot water. 39 homes also included plug-level monitoring of selected electrical appliances, real-power measurement of mains electricity and key sub-circuits, and more detailed temperature monitoring of gas- and heat-using equipment, including radiators and taps. Survey data included occupant demographics, values, attitudes and self-reported energy awareness, household income, energy tariffs, and building, room and appliance characteristics. Linked secondary data comprises weather and level of urbanisation. The data is provided in comma-separated format with a custom-built API to facilitate usage, and has been cleaned and documented. The data has a wide range of applications, including investigating energy demand patterns and drivers, modelling building performance, and undertaking Non-Intrusive Load Monitoring research.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2287
Author(s):  
Kaina Qin ◽  
Shanshan Wang ◽  
Zhongjian Kang

With the rapid increase in the proportion of the installed wind power capacity in the total grid capacity, the state has put forward higher and higher requirements for wind power integration into the grid, among which the most difficult requirement is the zero-voltage ride through (ZVRT) capability of the wind turbine. When the voltage drops deeply, a series of transient processes, such as serious overvoltage, overcurrent, or speed rise, will occur in the motor, which will seriously endanger the safe operation of the wind turbine itself and its control system, and cause large-scale off-grid accident of wind generator. Therefore, it is of great significance to improve the uninterrupted operation ability of the wind turbine. Doubly fed induction generator (DFIG) can achieve the best wind energy tracking control in a wide range of wind speed and has the advantage of flexible power regulation. It is widely used at present, but it is sensitive to the grid voltage. In the current study, the DFIG is taken as the research object. The transient process of the DFIG during a fault is analyzed in detail. The mechanism of the rotor overcurrent and DC bus overvoltage of the DFIG during fault is studied. Additionally, the simulation model is built in DIgSILENT. The active crowbar hardware protection circuit is put into the rotor side of the wind turbine, and the extended state observer and terminal sliding mode control are added to the grid side converter control. Through the cooperative control technology, the rotor overcurrent and DC bus overvoltage can be suppressed to realize the zero-voltage ride-through of the doubly fed wind turbine, and ensure the safe and stable operation of the wind farm. Finally, the simulation results are presented to verify the theoretical analysis and the proposed control strategy.


Author(s):  
Mirko Baratta ◽  
Stefano d’Ambrosio ◽  
Daniela Misul ◽  
Ezio Spessa

An experimental investigation and a burning-rate analysis have been performed on a production 1.4 liter CNG (compressed natural gas) engine fueled with methane-hydrogen blends. The engine features a pent-roof combustion chamber, four valves per cylinder and a centrally located spark plug. The experimental tests have been carried out in order to quantify the cycle-to-cycle and the cylinder-to-cylinder combustion variation. Therefore, the engine has been equipped with four dedicated piezoelectric pressure transducers placed on each cylinder and located by the spark plug. At each test point, in-cylinder pressure, fuel consumption, induced air mass flow rate, pressure and temperature at different locations on the engine intake and exhaust systems as well as ‘engine-out’ pollutant emissions have been measured. The signals correlated to the engine operation have been acquired by means of a National Instruments PXI-DAQ system and a home developed software. The acquired data have then been processed through a combustion diagnostic tool resulting from the integration of an original multizone thermodynamic model with a CAD procedure for the evaluation of the burned-gas front geometry. The diagnostic tool allows the burning velocities to be computed. The tests have been performed over a wide range of engine speeds, loads and relative air-fuel ratios (up to the lean operation). For stoichiometric operation, the addition of hydrogen to CNG has produced a bsfc reduction ranging between 2 to 7% and a bsTHC decrease up to the 40%. These benefits have appeared to be even higher for lean mixtures. Moreover, hydrogen has shown to significantly enhance the combustion process, thus leading to a sensibly lower cycle-to-cycle variability. As a matter of fact, hydrogen addition has generally resulted into extended operation up to RAFR = 1.8. Still, a discrepancy in the abovementioned conclusions was observed depending on the engine cylinder considered.


2018 ◽  
Vol MA2018-01 (31) ◽  
pp. 1917-1917
Author(s):  
Dongho Lee ◽  
Kyoung-Shin Choi

Producing hydrogen via solar water splitting using a photoelectrochemical cell (PEC) persists as one of the most exciting research topics in the field of solar fuels. The construction of efficient PECs requires the integration of multiple components including a photoanode, a photocathode, an oxygen evolution catalyst, and a hydrogen evolution catalyst. Therefore, the compatibility and stability of all of these elements in a given operating condition are crucial. When the stability of a semiconductor electrode used as the photoanode or photocathode is limited in an acidic or basic condition which is optimum for the operation of the other components, a thin protective layer has been deposited on the semiconductor surface to prevent its chemical dissolution. Surface coating of a thin and conformal TiO2 layer has been proven to be successful for protecting photoelectrodes since TiO2 is chemically and electrochemically stable in a wide range of pH conditions under both anodic and cathodic conditions. In order to prevent the semiconductor surface from coming into direct contact with the corrosive electrolyte, complete coverage of the photoelectrode with TiO2 is required. At the same time, the TiO2 layer should be thin enough not to interfere with the charge transport properties of the photoelectrode. As a result, atomic layer deposition (ALD) has been the only successful tool used to date to produce an effective protective layer. However, the slow processing time and economic viability of ALD methods motivated us to develop an inexpensive and facile solution-based synthesis method for the deposition of high quality TiO2 coating layers. In this presentation, we report a new electrochemical method to deposit a thin and conformal TiO2 layer on nanoporous BiVO4 that has an intricate, high surface area morphology. BiVO4 is a promising n-type photoanode material with a relatively low bandgap (2.4~2.5 eV). However, its usage has been limited to neutral and mildly basic conditions (pH 5~9) because it is chemically unstable in strongly acidic and basic conditions. Our method allows for the deposition of a 5~6 nm thick TiO2 layer on BiVO4 within 1 min and the resulting BiVO4/TiO2 electrodes exhibit chemical stability in basic solutions (pH 12~13). Sulfite oxidation measurements of BiVO4 and BiVO4/TiO2 electrodes show that the thin TiO2 protective layer does not significantly reduce the hole transfer to the electrolyte. Finally, we demonstrate the photoelectrochemical stability of the BiVO4/TiO2 electrode for photoelectrochemical water oxidation in basic solutions by coupling the BiVO4/TiO2 electrode with appropriate oxygen evolution catalysts.


1999 ◽  
Vol 39 (7) ◽  
pp. 5-11 ◽  
Author(s):  
Valentina Lazarova ◽  
Danièle Bellahcen ◽  
Jacques Manem ◽  
David A. Stahl ◽  
Bruce E. Rittmann

TURBO N® is a circulating-bed biofilm reactor that provides stable operation and high N removal for a wide range of N and BOD loadings. This paper describes the influence of operating conditions on biofilm composition and population dynamics when the TURBO N® is operated to achieve tertiary nitrification, simultaneous carbon and ammonia oxidation and total nitrogen removal when coupled with a pre-denitrification fixed floating bed reactor. In situ specific nitrification rates and respiration tests showed that ammonium and nitrite oxidizers became less active in the biofilm once oxidation of influent BOD became important. Analyses of community structure with oligonucleotide probes targeted to the 16S rRNA showed the same general trends for nitrifiers, but also suggested shifts in the makeup of the ammonium and nitrite oxidizers that could not be detected with respirometry or specific nitrification rates.


Sensors ◽  
2018 ◽  
Vol 18 (7) ◽  
pp. 2384 ◽  
Author(s):  
Hyeonhee Roh ◽  
Inkyum Kim ◽  
Jinsoo Yu ◽  
Daewon Kim

With the great development of the Internet of Things (IoT), the use of sensors have increased rapidly because of the importance in the connection between machines and people. A huge number of IoT sensors consume vast amounts of electrical power for stable operation and they are also used for a wide range of applications. Therefore, sensors need to operate independently, sustainably, and wirelessly to improve their capabilities. In this paper, we propose an orientation and the tilt triboelectric sensor (OT-TES) as a self-powered active sensor, which can simultaneously sense the tilting direction and angle by using the two classical principles of triboelectrification and electrostatic induction. The OT-TES device consists of a rectangular acrylic box containing polytetrafluoroethylene (PTFE) balls moved by gravity. The output voltage and current were 2 V and 20 nA, respectively, with a PTFE ball and Al electrode. The multi-channel system was adopted for measuring the degree and direction of tilt by integrating the results of measured electrical signals from the eight electrodes. This OT-TES can be attached on the equipment for drones or divers to measure their stability. As a result, this proposed device is expected to expand the field of TES, as a sensor for sky and the underwater.


2015 ◽  
Vol 4 (2) ◽  
pp. 149-154 ◽  
Author(s):  
A. M. Prystai ◽  
V. O. Pronenko

Abstract. The study of the deep structure of the Earth's crust is of great interest for both applied (e.g. mineral exploration) and scientific research. For this the electromagnetic (EM) studies which enable one to construct the distribution of electrical conductivity in the Earth's crust are of great use. The most common method of EM exploration is magnetotelluric sounding (MT). This passive method of research uses a wide range of natural geomagnetic variations as a powerful source of electromagnetic induction in the Earth, producing telluric current variations there. It includes the measurements of variations of natural electric and magnetic fields in orthogonal directions at the surface of the Earth. By this, the measurements of electric fields are much more complicated metrological processes, and, namely, they limit the precision of MT prospecting. This is especially complicated at deep sounding when measurements of long periods are of interest. The increase in the accuracy of the electric field measurement can significantly improve the quality of MT data. Because of this, the development of a new version of an instrument for the measurements of electric fields at MT – both electric field sensors and the electrometer – with higher levels relative to the known instrument parameter level – was initiated. The paper deals with the peculiarities of this development and the results of experimental tests of the new sensors and electrometers included as a unit in the long-period magnetotelluric station LEMI-420 are given.


Author(s):  
A. J. Perrotta ◽  
J. V. Smith

SummaryA full-matrix, three-dimensional refinement of kalsilite, KAlSi04 (hexagonal, a 5·16, c 8.69 Å, P6a), shows that the silicon and aluminium atoms are ordered. The respective tetrahedral distances of 1·61 and 1·74 Å agree with values of 1·61 and 1·75 Å taken to be typical of framework structures. As in nepheline, an oxygen atom is statistically distributed over three sites displaced 0·25 Å from the ideal position on a triad axis. This decreases the bond angle from 180° to 163° in conformity with observations on some other crystal structures. The potassiumoxygen distances of 2·77, 2·93, and 2·99 Å are consistent with the wide range normally found for this weakly bonded atom.


2021 ◽  
Vol 23 (1) ◽  
pp. 45
Author(s):  
S. Eskandarsefat ◽  
P. Caputo ◽  
C. Oliviero Rossi ◽  
R. Vaiana ◽  
C. Sangiorgi

This paper deals with the fundamental differences between industrial and paving-grade bituminous binders. The paper is presented in two main sections: 1) a review of the materials’ colloidal structure and the required properties for the industrial and paving applications; 2) a wide range of experimental tests with which the bituminous binders were studied and compared. In this research, a 160/220 industrial bitumen was studied and compared to a paving-grade bitumen with the same penetration and with a lower penetration, 70/100 one. The research consisted of physical, chemical, thermal, microstructural, and rheological analysis to provide a comprehensive understanding of these bituminous binders of diverse applications. Overall, the comparison of the tests’ results indicated that while the asphaltene content and its characteristics have a great influence on the bitumen’s properties, it is not the only fundamental factor. During the study of the chemical structures via Atomic Force Microscopy (AFM), it was found that the Peri phase (attributed to the resins) also plays an important role, defining the bitumen’s physical visco-elastic properties. In fact, from a microstructural point of view using AFM a significant difference was notified between the industrial bitumen and the paving-grade ones. These differences allow the paving-grade bitumens to be more elastic and ductile compared to the industrial bitumen.


2015 ◽  
Vol 86 (1) ◽  
pp. 135-141 ◽  
Author(s):  
Ke Zhang ◽  
Lan Huang ◽  
Lin Yang ◽  
Li Xu ◽  
Chaoran Xue ◽  
...  

ABSTRACTObjective: To identify the ideal ratios between the widths of the maxillary arch, mouth, and face, respectively, and to determine the range of acceptable esthetic variations based on these ideal ratios.Materials and Methods: A photograph of a young female with a harmonious smile was selected and digitally altered to produce two sets of images. The first image showed an altered intercanine width, while the second one showed an altered oral fissure breadth. These alterations were independently rated by judges, including 23 orthodontists and 30 undergraduates. The Mann-Whitney U-test was used to compare the scores given by male and female judges and those given by professional and nonprofessional judges.Results: The following ideal transverse ratios were determined: intercanine width/oral fissure breadth, 0.638; oral fissure breadth/interparopia width: the distance between left and right paropia, 0.617; and intercanine width/face width at the level of the labial commissures, 0.300. A range of −10% to +10% was proposed as the thresholds of esthetic smile evaluations. It was shown that gender of the raters had no effect on the rating of photographs, nor were there any statistically significant differences between the professional and nonprofessional judges’ ratings.Conclusions: Balanced transverse relationships in the facial region are important for smile esthetics, and there is a wide range of esthetically acceptable variations in the transverse relationships between the maxillary arch, mouth, and face.


Sign in / Sign up

Export Citation Format

Share Document