Genetic control of immune responses to parasites: selection for responsiveness and non-responsiveness to Trichuris muris in random-bred mice

Parasitology ◽  
1975 ◽  
Vol 71 (3) ◽  
pp. 377-384 ◽  
Author(s):  
D. Wakelin

Populations of Schofield strain, random-bred mice were shown to have a bimodal variation in ability to bring about immune expulsion of the nematode Trichuris muris. This variation was genetically determined and independent of the size of infection experienced. The proportion of mice unable to achieve worm expulsion (non-responders) was relatively constant in various populations of the strain but was increased by selective breeding from mice of known status. Crosses made between non-responder and responder mice produced progeny that were almost all (92%) of responder phenotype, showing that the ability to achieve worm expulsion was inherited as a dominant characteristic. It is suggested that the genetic control involves a small number of genes; the possible immunological mechanisms by which control is mediated are briefly discussed.

Parasitology ◽  
1975 ◽  
Vol 71 (1) ◽  
pp. 51-60 ◽  
Author(s):  
P. Wakelin

A comparison has been made of the responses of random-bred CFLP and inbred NIH mice to infection with Trichuris muris. Random-bred mice showed greater variation in worm burdens and less uniformity in worm expulsion. Irradiation prior to infection reduced variation, but did not increase the mean level of infection above that shown by the most susceptible unirradiated mice. In NIH mice, however, irradiation raised the level of infection in all mice. The factors responsible for variation between CFLP mice and for the level of infection in NIH mice came into play after the fifth day of infection and were inactivated by cortisone acetate. It is suggested that these factors are immunologically mediated and under direct genetic control. Uniformity of infection and expulsion in NIH mice is therefore seen as a consequence of genetic uniformity; variability in CFLP mice as a consequence of genetic variation.The time of worm expulsion was found to differ markedly between inbred strains of mice. Hybrid progeny showed the expulsion time characteristic of the parental strain with the most rapid expulsion; greater resistance was therefore inherited as a dominant characteristic. The genetic control of immunity to T. muris is discussed in the context of the antibody- and cell-mediated components of the expulsion process.


1977 ◽  
Vol 24 (1) ◽  
pp. 77-82 ◽  
Author(s):  
A. C. B. Hooper

SUMMARYThe length and diameter of the humerus, ulna, femur and tibia were studied at generations 10 and 14 in lines of mice selected for high and low body weight at 10 weeks of age.Although some deviations from control were not significant, a general pattern of correlated responses was evident. The divergences of high and low line means for bone length and diameter were significant in the four bones, confirming the contribution of these parameters to genetically determined alterations in body weight. Maternal effects did not affect bone length and diameter and heterosis was not important in the genetic control of these parameters. Unlike bone length, bone diameter continued to diverge in response to the additional four generations of selection. There may therefore be differences in the quantitative genetic control of bone length and diameter and consequently in the control of endochondral and intramembranous ossification.


Vaccines ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 20
Author(s):  
Anthony C. Ike ◽  
Chukwuebuka M. Ononugbo ◽  
Okechukwu J. Obi ◽  
Chisom J. Onu ◽  
Chinasa V. Olovo ◽  
...  

Infectious bronchitis (IB) and Newcastle disease (ND) are two important diseases of poultry and have remained a threat to the development of the poultry industry in many parts of the world. The immunology of avian has been well studied and numerous vaccines have been developed against the two viruses. Most of these vaccines are either inactivated vaccines or live attenuated vaccines. Inactivated vaccines induce weak cellular immune responses and require priming with live or other types of vaccines. Advanced technology has been used to produce several types of vaccines that can initiate prime immune responses. However, as a result of rapid genetic variations, the control of these two viral infections through vaccination has remained a challenge. Using various strategies such as combination of live attenuated and inactivated vaccines, development of IB/ND vaccines, use of DNA vaccines and transgenic plant vaccines, the problem is being surmounted. It is hoped that with increasing understanding of the immunological mechanisms in birds that are used in fighting these viruses, a more successful control of the diseases will be achieved. This will go a long way in contributing to global food security and the economic development of many developing countries, given the role of poultry in the attainment of these goals.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Melanie R. Neeland ◽  
Samantha Bannister ◽  
Vanessa Clifford ◽  
Kate Dohle ◽  
Kim Mulholland ◽  
...  

AbstractChildren have mild severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) confirmed disease (COVID-19) compared to adults and the immunological mechanisms underlying this difference remain unclear. Here, we report acute and convalescent innate immune responses in 48 children and 70 adults infected with, or exposed to, SARS-CoV-2. We find clinically mild SARS-CoV-2 infection in children is characterised by reduced circulating subsets of monocytes (classical, intermediate, non-classical), dendritic cells and natural killer cells during the acute phase. In contrast, SARS-CoV-2-infected adults show reduced proportions of non-classical monocytes only. We also observe increased proportions of CD63+ activated neutrophils during the acute phase to SARS-CoV-2 in infected children. Children and adults exposed to SARS-CoV-2 but negative on PCR testing display increased proportions of low-density neutrophils that we observe up to 7 weeks post exposure. This study characterises the innate immune response during SARS-CoV-2 infection and household exposure in children.


1996 ◽  
Vol 184 (2) ◽  
pp. 753-758 ◽  
Author(s):  
X G Tai ◽  
Y Yashiro ◽  
R Abe ◽  
K Toyooka ◽  
C R Wood ◽  
...  

Costimulation mediated by the CD28 molecule plays an important role in optimal activation of T cells. However, CD28-deficient mice can mount effective T cell-dependent immune responses, suggesting the existence of other costimulatory systems. In a search for other costimulatory molecules on T cells, we have developed a monoclonal antibody (mAb) that can costimulate T cells in the absence of antigen-presenting cells (APC). The molecule recognized by this mAb, 9D3, was found to be expressed on almost all mature T cells and to be a protein of approximately 24 kD molecular mass. By expression cloning, this molecule was identified as CD9, 9D3 (anti-CD9) synergized with suboptimal doses of anti-CD3 mAb in inducing proliferation by virgin T cells. Costimulation was induced by independent ligation of CD3 and CD9, suggesting that colocalization of these two molecules is not required for T cell activation. The costimulation by anti-CD9 was as potent as that by anti-CD28. Moreover, anti-CD9 costimulated in a CD28-independent way because anti-CD9 equally costimulated T cells from the CD28-deficient as well as wild-type mice. Thus, these results indicate that CD9 serves as a molecule on T cells that can deliver a potent CD28-independent costimulatory signal.


2011 ◽  
Vol 5 (Suppl 4) ◽  
pp. S32 ◽  
Author(s):  
Laurence Flori ◽  
Yu Gao ◽  
Isabelle P Oswald ◽  
François Lefevre ◽  
Marcel Bouffaud ◽  
...  

1972 ◽  
Vol 78 (1) ◽  
pp. 1-6 ◽  
Author(s):  
Marca Burns

SUMMARYBirthcoat samples from Lincoln and Welsh Mountain lambs born in an ova transfer experiment (Weiner & Slee, 1965) were examined to determine the fibre type arrays and any effect of ova transfer on manifestation of the prenatal check or the base (Dry, 1965).In the Lincoln breed arrays were Truncated Ravine or Truncated Valley thus showing central checking. Pre-curly tip fibres were mainly confined to central primary follicles. Post-natal medullation was plentiful, especially in peak curly-tips, but kemp was absent. In the Welsh lambs all identifiable arrays were either Plateau or Saddle, with the lateral primary fibres more checked than the centrals. Pre-curly tip fibres occupied almost all the primary follicles, with only a few curly-tips in primary laterals. Post-natal medullation was strongest in pre-curly tips and their successors.The effect of ova transfer was to decrease the manifestation of check in Lincoln-in-Welsh and increase it in Welsh-in-Lincoln, without affecting the base. Although this, in each case, changed the check of the lamb in the direction of that of the foster breed, it is suggested that this may not be due to any influence of maternal check on foetal check. The effect on pre-natal check may be due to foetal size, and in particular skin expansion, during a short period immediately following completion of primary follicle initiation. As compared to their respective controls, the Welsh transfer lambs had a higher S/P ratio at birth, whilst that of the transferred Lincolns was reduced.If increased prenatal fibre check is associated with increased foetal growth rate at the relevant period, it may also be correlated with increased lamb size at birth and therefore have been favoured in selection for meat production, at least in some breeds.


2004 ◽  
Vol 26 (1) ◽  
pp. 61 ◽  
Author(s):  
DW Cooper

Immunocontraception involves eliciting an immune response against eggs, sperm or hormones so that successful reproduction is prevented. Work in Australasia is aimed at European rabbits (Oryctolagus cuniculus), red foxes (Vulpes vulpes), house mice (Mus musculus), common brushtail possums (Trichosurus vulpecula), koalas (Phascolartcos cinereus) and kangaroos (Macropus spp.), with the vaccines involved all containing self antigens or their relatives. Two fundamental problems have been inadequately addressed in this research. The first problem is that it is difficult to obtain strong immune responses against self antigens and so the vaccines may be ineffective. Most published data on the effect of immunocontraceptives on reproduction involve the use of an adjuvant of which there are many kinds. The materials enhance the immune response greatly. The most frequently used is Freund?s adjuvant which can cause chronic suffering. Its use on wildlife will lead to very negative public perceptions. There has been no convincing demonstration that successful immunocontraception is possible with any method of vaccination likely to be used in the field, if success is defined as contraception of a proportion of the population high enough for management requirements. If it is assumed that success can be achieved, the second fundamental problem arises with two potential consequences. Even with adjuvant, a substantial minority of the vaccinated animals remains fertile. The first consequence is that since failure to be contracepted is likely to be in part genetic, there is likely to be rapid selection for these non-responders. The method will become ineffective in a few generations. The second problem is that the offspring of the animals which breed will have altered immune responses. Their capacities to respond to their own pathogens or to harbor pathogens of other species in the same ecosystem are likely to be changed. The presence of chlamydia in P. cinereus and bovine tuberculosis in New Zealand T. vulpecula means that responses to these pathogens would have to be studied in offspring of immunocontracepted parents to ensure that the offspring were not more susceptible to them. New Zealand intentions to put an immunocontraceptive into a T. vulpecula gut worm must be viewed with caution by Australia. The eggs of transgenic worms will be easily transplanted either accidentally or deliberately back into Australia, and so infect T. vulpecula in Australia.


Parasitology ◽  
1990 ◽  
Vol 100 (3) ◽  
pp. 479-489 ◽  
Author(s):  
K. J. Else ◽  
D. Wakelin

SUMMARYStrains of mice poorly (B10) or non-responsive (B10.BR) to a primary infection with Trichuris muris were protected against infection by vaccination with excretory/secretory (E/S) antigen in Complete Freund's Adjuvant (CFA). Protection in these mice was slow to be expressed compared to that in good responder strains. Vaccination boosted the IgG and IgG1 antibody responses to E/S antigen and altered the antigen recognition profiles, three high molecular weight antigens (80–85, 90–95, 105–110 kDa) being recognized by antibodies in sera from vaccinated but not control mice. B10. BR mice which had experienced a patent primary infection could not be protected against challenge infections by vaccination and this was correlated with depressed levels of IgG1, but not total IgG, to E'S antigen early post-challenge compared with vaccinated infected mice which had not seen an adult primary infection. There was also lack of recognition of the three high molecular weight antigens recognized by antibodies in sera from mice infected after vaccination. It is suggested that the rapid development of high levels of IgG1 antibodies, and the recognition of the three high molecular weight antigens, may reflect events that are important in protective immunity. Immunomodulation of host immunity by T. muris may therefore be achieved, at least in part, by the suppression of specific IgG1 levels, the production of an irrelevant IgG isotype and prevention of the recognition of critical antigens.


Sign in / Sign up

Export Citation Format

Share Document