The immune response and the evaluation of acquired immunity against gastrointestinal nematodes in cattle: a review

Parasitology ◽  
2000 ◽  
Vol 120 (7) ◽  
pp. 25-42 ◽  
Author(s):  
E. CLAEREBOUT ◽  
J. VERCRUYSSE

The present review discusses the immune responses to gastrointestinal nematodes in cattle and the different immunological and parasitological parameters used to assess acquired immunity. Measuring acquired immunity to gastrointestinal nematodes in cattle (e.g. for the evaluation of candidate parasite vaccines) is hampered by the limited understanding of bovine immune responses against gastrointestinal parasites. In this paper the available data on protective immunity against gastrointestinal nematodes, and especially Ostertagia ostertagi, in cattle are compared with the current knowledge of protective immune responses against gastrointestinal nematodes in rodent models and small ruminants. In contrast to the immune response in mice, which is controlled by T helper 2 (Th2) lymphocytes and results in mast cell- or goblet cell- mediated expulsion of adult worms, bovine immune responses to O. ostertagi do not show a clear Th2 cytokine profile, nor do they result in rapid expulsion of the parasite. The first manifestation of immunity to O. ostertagi in calves is a reduction of worm fecundity, possibly regulated by the local IgA response. Worm numbers are only reduced after a prolonged period of host–parasite contact, and there are indications that O. ostertagi actively suppresses the host's immune response. Until the mechanisms of protective immunity against O. ostertagi are revealed, the use of immunological parameters to estimate acquired immunity in cattle is based on their correlation with parasitological parameters and on extrapolation from rodent and small ruminant models. Assessing the resistance of calves against a challenge infection by means of parasitological parameters is probably still the most accurate way to measure acquired immunity against gastrointestinal nematodes.

2018 ◽  
Vol 92 (24) ◽  
Author(s):  
Sophia Hodgson ◽  
Katy Moffat ◽  
Holly Hill ◽  
John T. Flannery ◽  
Simon P. Graham ◽  
...  

ABSTRACTPeste des petits ruminants (PPR) is a severe disease of goats and sheep that is widespread in Africa, the Middle East, and Asia. Several effective vaccines exist for the disease, based on attenuated strains of the virus (PPRV) that causes PPR. While the efficacy of these vaccines has been established by use in the field, the nature of the protective immune response has not been determined. In addition, while the vaccine derived from PPRV/Nigeria/75/1 (N75) is used in many countries, those developed in India have never been tested for their efficacy outside that country. We have studied the immune response in goats to vaccination with either N75 or the main Indian vaccine, which is based on isolate PPRV/India/Sungri/96 (S96). In addition, we compared the ability of these two vaccines, in parallel, to protect animals against challenge with pathogenic viruses from the four known genetic lineages of PPRV, representing viruses from different parts of Africa, as well as Asia. These studies showed that, while N75 elicited a stronger antibody response than S96, as measured by both enzyme-linked immunosorbent assay and virus neutralization, S96 resulted in more pronounced cellular immune responses, as measured by virus antigen-induced proliferation and interferon gamma production. While both vaccines induced comparable numbers of PPRV-specific CD8+T cells, S96 induced a higher number of CD4+T cells specifically responding to virus. Despite these quantitative and qualitative differences in the immune responses following vaccination, both vaccines gave complete clinical protection against challenge with all four lineages of PPRV.IMPORTANCEDespite the widespread use of live attenuated PPRV vaccines, this is the first systematic analysis of the immune response elicited in small ruminants. These data will help in the establishment of the immunological determinants of protection, an important step in the development of new vaccines, especially DIVA vaccines using alternative vaccination vectors. This study is also the first controlled test of the ability of the two major vaccines used against virulent PPRV strains from all genetic lineages of the virus, showing conclusively the complete cross-protective ability of these vaccines.


2003 ◽  
Vol 10 (4) ◽  
pp. 637-642 ◽  
Author(s):  
C. M. Ausiello ◽  
R. Lande ◽  
P. Stefanelli ◽  
C. Fazio ◽  
G. Fedele ◽  
...  

ABSTRACT The relative value of antibodies and/or T-cell immune responses to Bordetella pertussis antigens in the immunity induced by acellular pertussis (aP) vaccines is still an open issue, probably due to the incomplete knowledge on the mechanisms of protective immunity to pertussis. The relevance of T-cell immune responses in protection from pertussis has been demonstrated in murine and human models of infection; thus, in this study, the ability of different vaccine preparations of three component (pertussis toxin, filamentous hemagglutinin, and pertactin) aP vaccines to induce T-cell responses was investigated in mice. All vaccine preparations examined passed the immunogenicity control test, based on antibody titer assessment, according to European Pharmacopoeia standards, and protected mice from B. pertussis intranasal challenge, but not all preparations were able to prime T cells to pertussis toxin, the specific B. pertussis antigen. In particular, one vaccine preparation was unable to induce proliferation and gamma interferon (IFN-γ) production while the other two gave borderline results. The evaluation of T-cell responses to pertussis toxin antigen may provide information on the protective immunity induced by aP vaccines in animal models. Considering the critical role of the axis interleukin-12-IFN-γ for protection from pertussis, our results suggest that testing the induction of a key protective cytokine such as IFN-γ could be an additional tool for the evaluation of the immune response induced by aP vaccines.


npj Vaccines ◽  
2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Giuseppe Lofano ◽  
Corey P. Mallett ◽  
Sylvie Bertholet ◽  
Derek T. O’Hagan

Abstract Vaccines represent the most successful medical intervention in history, with billions of lives saved. Although multiple doses of the same vaccine are typically required to reach an adequate level of protection, it would be advantageous to develop vaccines that induce protective immunity with fewer doses, ideally just one. Single-dose vaccines would be ideal to maximize vaccination coverage, help stakeholders to greatly reduce the costs associated with vaccination, and improve patient convenience. Here we describe past attempts to develop potent single dose vaccines and explore the reasons they failed. Then, we review key immunological mechanisms of the vaccine-specific immune responses, and how innovative technologies and approaches are guiding the preclinical and clinical development of potent single-dose vaccines. By modulating the spatio-temporal delivery of the vaccine components, by providing the appropriate stimuli to the innate immunity, and by designing better antigens, the new technologies and approaches leverage our current knowledge of the immune system and may synergize to enable the rational design of next-generation vaccination strategies. This review provides a rational perspective on the possible development of future single-dose vaccines.


2021 ◽  
Vol 37 (4) ◽  
pp. 65-77
Author(s):  
G.M. Titareva ◽  
A.N. Mokrievich ◽  
T.I. Kombarova ◽  
G.M. Vakhrameeva ◽  
R.I. Mironova ◽  
...  

It is known that the body's defense against infection by the intracellular bacterium Francisella tularensis is provided by the activation of the cellular and humoral immune response. However, their role in long-term protection (25 years and more) against virulent strains of F. tularensis is not well understood. The identification of clear criteria for assessing protective immunity to the tularemia causative agent at different times after vaccination will make it possible to more efficiently develop new genetically determined vaccine strains. The goal of our research was to select and assess immunological parameters reflecting the protective properties of the vaccine strain F. tularensis 15 NIIEG and its derivatives, F. tularensis 15/23-1∆recA and F. tularensis 15/ 23-1/sodB∆recA, in the long term after immunization. To assess the functional activity of T and B cells, flow cytometry was used.The assessment of the production of cytokines IFN-γ, IL-4, IL-10, IL-17A and titers of specific class G immunoglobulins to F. tularensis lipopolysaccharide (LPS)in blood serum was performed by ELISA on days 30, 60, 90 and 180 after immunization. Evaluation of the protective properties of vaccine preparations in the above-mentioned terms was carried out after subcutaneous infection with test-infecting virulent strains, Schu and 503 of tularensis and holarctica subspecies, respectively. It was shown that vaccination with the studied strains in 100% of cases protected from infection with the strain 503 of the holarctica subspecies, analogous to the vaccine strain. When infected with a virulent Schu strain of the hetrologous tularensis subspecies, a decrease in the effectiveness of protection was observed starting from 60 days after immunization. Evaluation of immunological parameters showed that at all studied periods after immunization, IgG antibodies to F. tularensis LPS were detected in the blood sera of immunized mice. In vitro experiments on stimulation of immune response in spleen lymphocytes of vaccinated mice to the F. tularensis antigen showed a significant increase in the level of secreted IFN-γ, a slight increase in secreted IL-10 and an enhanced expression of the CD69 molecule on the surface of T and B cells. Thus, the level of IFN-γ and the expression of the CD69 molecule on the surface of T and B cells in response to restimulation of lymphocytes of immune animals with tularemia antigen can serve as criteria for immune protection in experimental tularemia in a mouse model at different times after vaccination. Key words: vaccine strain, Fransicella tularensis, immunogenicity, protection, memory T cells, IgG, cellular immunity Funding - The work was supported by the Branch Program of the Russian Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing.


2014 ◽  
Vol 11 (99) ◽  
pp. 20140416 ◽  
Author(s):  
Joaquín Prada Jiménez de Cisneros ◽  
Michael J. Stear ◽  
Colette Mair ◽  
Darran Singleton ◽  
Thorsten Stefan ◽  
...  

Gastrointestinal nematodes are a global cause of disease and death in humans, wildlife and livestock. Livestock infection has historically been controlled with anthelmintic drugs, but the development of resistance means that alternative controls are needed. The most promising alternatives are vaccination, nutritional supplementation and selective breeding, all of which act by enhancing the immune response. Currently, control planning is hampered by reliance on the faecal egg count (FEC), which suffers from low accuracy and a nonlinear and indirect relationship with infection intensity and host immune responses. We address this gap by using extensive parasitological, immunological and genetic data on the sheep– Teladorsagia circumcincta interaction to create an immunologically explicit model of infection dynamics in a sheep flock that links host genetic variation with variation in the two key immune responses to predict the observed parasitological measures. Using our model, we show that the immune responses are highly heritable and by comparing selective breeding based on low FECs versus high plasma IgA responses, we show that the immune markers are a much improved measure of host resistance. In summary, we have created a model of host–parasite infections that explicitly captures the development of the adaptive immune response and show that by integrating genetic, immunological and parasitological understanding we can identify new immune-based markers for diagnosis and control.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Aline F. Teixeira ◽  
Luis G. V. Fernandes ◽  
Antonio Souza Filho ◽  
Gisele O. Souza ◽  
Silvio A. Vasconcellos ◽  
...  

Leptospirosis is a neglected tropical disease caused by pathogenicLeptospiraspp. The lack of an effective vaccine favors the increase of the disease. Currently, surface-exposed proteins are the main targets for the search of vaccine candidates. In this study, we examined whether the surface Lsa46 and Lsa77 proteins, previously identified as laminin and plasminogen binding proteins, have the capacity of inducing protection and sterilizing immunity against challenge with virulentLeptospirain hamster model. Animals were subcutaneously immunized with Lsa46, Lsa77, or a combination of both in Alum adjuvant and challenged intraperitoneally withL. interrogansserovar Kennewicki strain Pomona Fromm. Hamster immunization with Lsa46 or Lsa77 or both promoted a strong IgG response. Th2- and Th1-biased immune responses were observed when Lsa46 and Lsa77 were individually administered, respectively, as detected by the IgG1/IgG2/3 ratio. Immunized hamsters with the combined proteins induced a Th1-biased immune response. Although the immunization with Lsa46 and Lsa77 stimulated protective immunity with reduction of bacterial burden, when compared to animals individually immunized with the proteins, the data was not statistically significant. Thus, although promising, more studies are needed before the role of these proteins in stimulating sterilizing immunity in mammals is conclusively determined.


2017 ◽  
Vol 91 (15) ◽  
Author(s):  
Ariana G. Bravo Cruz ◽  
Aiguo Han ◽  
Edward J. Roy ◽  
Arielle B. Guzmán ◽  
Rita J. Miller ◽  
...  

ABSTRACT All viruses strategically alter the antiviral immune response to their benefit. The vaccinia virus (VACV) K1 protein has multiple immunomodulatory effects in tissue culture models of infection, including NF-κB antagonism. However, the effect of K1 during animal infection is poorly understood. We determined that a K1L-less vaccinia virus (vΔK1L) was less pathogenic than wild-type VACV in intranasal and intradermal models of infection. Decreased pathogenicity was correlated with diminished virus replication in intranasally infected mice. However, in intradermally inoculated ears, vΔK1L replicated to levels nearly identical to those of VACV, implying that the decreased immune response to vΔK1L infection, not virus replication, dictated lesion size. Several lines of evidence support this theory. First, vΔK1L induced slightly less edema than vK1L, as revealed by histopathology and noninvasive quantitative ultrasound technology (QUS). Second, infiltrating immune cell populations were decreased in vΔK1L-infected ears. Third, cytokine and chemokine gene expression was decreased in vΔK1L-infected ears. While these results identified the biological basis for smaller lesions, they remained puzzling; because K1 antagonizes NF-κB in vitro, antiviral gene expression was expected to be higher during vΔK1L infection. Despite these diminished innate immune responses, vΔK1L vaccination induced a protective VACV-specific CD8+ T cell response and protected against a lethal VACV challenge. Thus, vΔK1L is the first vaccinia virus construct reported that caused a muted innate immune gene expression profile and decreased immune cell infiltration in an intradermal model of infection yet still elicited protective immunity. IMPORTANCE The vaccinia virus (VACV) K1 protein inhibits NF-κB activation among its other antagonistic functions. A virus lacking K1 (vΔK1L) was predicted to be less pathogenic because it would trigger a more robust antiviral immune response than VACV. Indeed, vΔK1L was less pathogenic in intradermally infected mouse ear pinnae. However, vΔK1L infection unexpectedly elicited dramatically reduced infiltration of innate immune cells into ears. This was likely due to decreased expression of cytokine and chemokine genes in vΔK1L-infected ears. As such, our finding contradicted observations from cell culture systems. Interestingly, vΔK1L conferred protective immunity against lethal VACV challenge. This suggests that the muted immune response triggered during vΔK1L infection remained sufficient to mount an effective protective response. Our results highlight the complexity and unpredictable nature of virus-host interactions, a relationship that must be understood to better comprehend virus pathogenesis or to manipulate viruses for use as vaccines.


2021 ◽  
Vol 11 (2-S) ◽  
pp. 205-210
Author(s):  
Christian C DANSOU ◽  
Julienne KUISEU ◽  
Géraldo T. HOUMENOU ◽  
Lissette H. DEGLA ◽  
Fréjus T. A. ZINSOU ◽  
...  

This article aims to present the current state of the fight against gastrointestinal parasites in small ruminants from Improved Traditional Drugs (DTI). A host of scientific documents were consulted by means of search engines to gather the information useful for this synthesis. The failure of conventional treatments has led to the use of new methods to treat digestive pathologies due to internal parasitism in herds of sheep and goats. These include, among others, herbal medicine, homeopathy, aromatherapy, the mixed grazing system for small and large ruminants, ... All plant parts of plants can be used in the preparation of remedies. Several scientific studies show that plants are full of chemical compounds that cause anthelmintic effects on gastrointestinal parasites in small ruminants. Literature searches have revealed that studies on DTIs in the management of gastrointestinal nematodes in small ruminants are non-existent. In addition to the forms (decocted, macerated, infused, etc.) traditionally used by breeders, there are other forms that can be used to make DTIs from plant extracts. There are capsules, capsules, tablets etc. The placing on the market of DTIs requires official authorization based on the safety and reproducibility of the products. From the documents consulted, it appears that scientific research has not yet focused on the formulation of DTIs for the treatment of gastrointestinal parasitic nematodes in small ruminants. It will be useful to manufacture them to facilitate access to veterinary care and the sustainable management of animal health. Keywords: Improved Traditional Drugs; Gastrointestinal nematodes; Small ruminants, West Africa; Central Africa.


2018 ◽  
Vol 10 ◽  
pp. 175883591879310 ◽  
Author(s):  
Maria Gonzalez-Cao ◽  
Niki Karachaliou ◽  
Mariacarmela Santarpia ◽  
Santiago Viteri ◽  
Andreas Meyerhans ◽  
...  

A coordinated action of innate and adaptive immune responses is required to efficiently combat a microbial infection. It has now become clear that cancer therapies also largely benefit when both arms of the immune response are engaged. In this review, we will briefly describe the current knowledge of innate immunity and how this can be utilized to prime tumors for a better response to immune checkpoint inhibitors. Comments on compounds in development and ongoing clinical trials will be provided.


2002 ◽  
Vol 2002 ◽  
pp. 232-232
Author(s):  
Ilias Kyriazakis ◽  
Jos Houdijk ◽  
Bob Coop

How do animal hosts control worms? When an animal ingests an infective form of a gastrointestinal helminth (roundworm) from pasture, it can contain the infection by limiting the establishment, growth rate, fecundity and persistence of the parasite. This containment is achieved through the direct and indirect actions of the immune response. A helminth-specific immune response is, by and large, a local one and is achieved by an increase in the number of effector cells and the concentration of effector substances (such as specific immunoglobulins, proteases and mucin) in the gastrointestinal mucosa and lumen. The delivery of some of the effector substances is achieved through plasma leakage, part of which is irretrievably lost As these responses require nutrients for their expression and replenishment, it is not unreasonable to expect that host nutrition has the potential to affect the immune responses when nutrient resources are scarce. In this presentation we concentrate on the consequences of nutrition on the acquired immunity to parasites. Host nutrition can also affect innate immunity by, for example, making the gastrointestinal environment more hostile to parasites, but such effects will not be considered any further here.


Sign in / Sign up

Export Citation Format

Share Document