scholarly journals Picloram Release from Leafy Spurge (Euphorbia esula) Roots in the Field

Weed Science ◽  
1989 ◽  
Vol 37 (2) ◽  
pp. 167-174 ◽  
Author(s):  
Michael V. Hickman ◽  
Calvin G. Messersmith ◽  
Rodney G. Lym

Picloram release by leafy spurge roots, as affected by picloram rate, plant growth stage, and time intervals after treatment, was quantified under field conditions. Picloram was pipe-wick applied to leafy spurge in the vegetative, flowering, and seed-filling growth stages. Percent leafy spurge control was evaluated and picloram residues were determined in soil samples from 0- to 13-, 13- to 26-, and 26- to 39-cm depths taken 1, 2, and 3 weeks after treatment. Leafy spurge was controlled (frequently >85%) by all picloram concentrations applied, although control tended to increase as solution concentration increased. Picloram release from roots was greater from plants treated in the flowering and seed-filling stages than from plants in the vegetative stage. Picloram release from roots generally was correlated with application rate, averaging 490, 820, and 1420 ppbw in soil for the 30, 60, and 120 g ae/L application rates, respectively. Picloram release from roots occurred rapidly with 86% of the picloram detected in the 0- to 13-cm soil depth present by 1 week after treatment. Picloram was detected at all soil depths sampled, but over 84% was in the upper 13 cm and 8% was in both the 13- to 26- and 26- to 39-cm depths. Leafy spurge shoots emerged through a 7.5- and 15-cm depth of picloram-treated soil at concentrations up to 1000 ppbw within 14 to 21 days after the untreated control. Picloram soil residue had little effect on leafy spurge root growth.

2017 ◽  
Vol 44 (1) ◽  
pp. 13-18 ◽  
Author(s):  
J.A. Arnold III ◽  
J.P. Beasley ◽  
G.H. Harris ◽  
T.L. Grey ◽  
M. Cabrera

ABSTRACT Calcium (Ca) availability in the 0 to 8 cm soil depth often limits peanut yield and influences grade in the southeastern United States. Field experiments were conducted in 2012 and 2013 at the University of Georgia's Coastal Plain Experiment Station, Tifton, GA (CPES) and the Southwest Georgia Research and Education Center, Plains, GA (SWREC) to determine large-seeded (Georgia-06G) and medium-seed sized (Georgia Greener) runner-type cultivar response to gypsum application rates of 0, 560, 1120, 1650 kg/ha. Peanut pod yield and grade (TSMK) were significantly different between locations with 7610 and 6540 kg/ha at CPES and SWREC, respectively. However, there were no differences between peanut cultivars or gypsum rates. Standard germination, seed vigor (cold germination), and seed Ca content analysis were also conducted on subsamples from each plot. Average peanut seed germination was 97% across all samples. No differences were observed for standard germination or vigor testing. Differences in locations were observed for yield, TSMK, percent jumbo, percent medium kernels, and seed Ca content. Peanut cultivar and gypsum application rate had effects on seed Ca concentration. Seed Ca concentration levels were 825 and 787 mg/kg for Georgia Greener and Georgia-06G, respectively. Seed Ca content increased as field gypsum application rate increased at both locations.


Agronomy ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 171
Author(s):  
Tao Sun ◽  
Xin Yang ◽  
Xiaoli Tan ◽  
Kefeng Han ◽  
Sheng Tang ◽  
...  

Previous studies have revealed that the japonica/indica hybrid rice has a higher yield potential, biomass production, and nitrogen (N) accumulation than japonica rice in China, however, at a single N application rate. It remains unclear whether it also occurs at a higher or lower N application rate under the same field condition. To investigate the effects of nitrogen application rates on grain yield, N uptake, dry matter accumulation, and agronomic N use efficiency, field experiments were conducted in Jinhua City, Zhejiang Province during three consecutive growth seasons in 2016, 2017, and 2018. Two japonica/indica hybrid varieties (Yongyou 12 and Yongyou 538) and two japonica varieties (Xiushui 134 and Jia 58) were exposed to five N application rates (0, 150, 225, 300, and 375 kg ha−1). The results showed that grain yields of all the varieties increased with increasing nitrogen application rates, except for Jia 58 whose optimum nitrogen level was 225 kg ha−1, because no significant difference was observed between N225 and N300. Across the four rice varieties, N uptake increased significantly with increased N-fertilizer rates at all the growth stages (p < 0.05). Across the three planting years, the average grain yield of japonica/indica hybrid rice was higher than that of japonica rice by 75.6% at N0, 57.2% at N150, 41.1% at N225, 38.3% at N300, and 45.8% at N375. We also found that as compared with japonica rice, the japonica/indica hybrid rice had more grain yield, higher dry matter, and higher N uptake at all growth stages, regardless of the N application rate.


1997 ◽  
Vol 11 (3) ◽  
pp. 586-590 ◽  
Author(s):  
Donald R. Kirby ◽  
Thomas P. Hanson ◽  
Kelly D. Krabbenhoft ◽  
Matt M. Kirby

The effect of annual defoliation on leafy spurge-infested rangeland was investigated over a 5-yr period. Artificial defoliation was conducted once or twice annually at various phenological growth stages of leafy spurge to simulate grazing by herded Angora goats. Single defoliation treatments did not reduce total leafy spurge stem densities. Defoliation twice in a growing season for 4 consecutive yr reduced total leafy spurge stem densities by 55% over nondefoliated controls. Grass foliar cover and yield increased in all defoliation treatments. Despite the increased grass yield on single defoliation treatments, cattle use would likely be limited in these treatments due to the high density of leafy spurge stems. Stem densities of leafy spurge in twice-defoliated treatments should not deter cattle from grazing these sites, thereby increasing the available forage supply. The data suggest that repeated grazing of leafy spurge-infested rangeland within a growing season would be required to reduce stem densities adequately and increase cattle use and production from these sites.


Weed Science ◽  
1992 ◽  
Vol 40 (1) ◽  
pp. 101-105 ◽  
Author(s):  
Rodney G. Lym

Absorption and translocation of14C-fluroxypyr were determined for leafy spurge at various growth stages, under differing relative humidity and temperature conditions, and when applied with picloram or 2,4-D. Absorption of14C-fluroxypyr was greater in vegetative plants (39%) than in flowering or postflowering plants (25%), while total translocated to roots averaged 2% of applied herbicide regardless of growth stage. Greater14C-fluroxypyr absorption and translocation occurred in plants exposed to high relative humidity (>90%) compared to low humidity (<30%) for 6 h or longer following treatment. Absorption and translocation to roots was independent of temperature (18 or 24 C). Absorption and translocation declined by 50% when applied with picloram or 2,4-D. However, absorption and translocation of14C-picloram or14C-2,4-D were not affected by fluroxypyr. Fluroxypyr would likely be used in a leafy spurge control program only during environmental conditions adverse to control with picloram such as unseasonably warm or cold temperatures or in areas with a high water table.


1993 ◽  
Vol 7 (1) ◽  
pp. 76-78 ◽  
Author(s):  
Jamal S. Al-Henaid ◽  
Mark A. Ferrell ◽  
Stephen D. Miller

Leafy spurge viable seed production and germination were reduced by 2,4-D applied during flower development and seed formation, in the field. Viable seed production was reduced when 2,4-D was applied at all growth stages after the start of flower bud development. The number of viable seed from untreated plants was 173, while, the number of viable seed from plants treated 0, 7, 14, 21, 28, or 35 d after the start of flower bud development was <1, 4, 7, 31, 53, and 62; respectively. Leafy spurge seed germination was higher in gibberellic acid than in water for seed collected from untreated plants and from plants treated with 2,4-D 7, 14, and 21 d after bud initiation. This research shows that 2,4-D must be applied prior to flower bud development to prevent seed production.


2020 ◽  
Vol 66 (No. 9) ◽  
pp. 468-476
Author(s):  
Miroslav Jursík ◽  
Martin Kočárek ◽  
Michaela Kolářová ◽  
Lukáš Tichý

Six sunflower herbicides were tested at two application rates (1N and 2N) on three locations (with different soil types) within three years (2015–2017). Efficacy of the tested herbicides on Chenopodium album increased with an increasing cation exchange capacity (CEC) of the soil. Efficacy of pendimethalin was 95%, flurochloridone and aclonifen 94%, dimethenamid-P 72%, pethoxamid 49% and S-metolachlor 47%. All tested herbicides injured sunflower on sandy soil (Regosol) which had the lowest CEC, especially in wet conditions (phytotoxicity 27% after 1N application rate). The highest phytotoxicity was recorded after the application of dimethenamid-P (19% at 1N and 45% at 2N application rate). Main symptoms of phytotoxicity were leaf deformations and necroses and the damage of growing tips, which led to destruction of some plants. Aclonifen, pethoxamid and S-metolachlor at 1N did not injure sunflower on the soil with the highest CEC (Chernozem) in any of the experimental years. Persistence of tested herbicides was significantly longer in Fluvisol (medium CEC) compared to Regosol and Chernozem. Dimethenamid-P showed the shortest persistence in Regosol and Chernozem. The majority of herbicides was detected in the soil layer 0–5 cm in all tested soils. Vertical transport of herbicides in soil was affected by the herbicide used, soil type and weather conditions. The highest vertical transport was recorded for dimethenamid-P and pethoxamid (4, resp. 6% of applied rate) in Regosol in the growing season with high precipitation.  


Author(s):  
Subin Kalu ◽  
Gboyega Nathaniel Oyekoya ◽  
Per Ambus ◽  
Priit Tammeorg ◽  
Asko Simojoki ◽  
...  

AbstractA 15N tracing pot experiment was conducted using two types of wood-based biochars: a regular biochar and a Kon-Tiki-produced nutrient-enriched biochar, at two application rates (1% and 5% (w/w)), in addition to a fertilizer only and a control treatment. Ryegrass was sown in pots, all of which except controls received 15N-labelled fertilizer as either 15NH4NO3 or NH415NO3. We quantified the effect of biochar application on soil N2O emissions, as well as the fate of fertilizer-derived ammonium (NH4+) and nitrate (NO3−) in terms of their leaching from the soil, uptake into plant biomass, and recovery in the soil. We found that application of biochars reduced soil mineral N leaching and N2O emissions. Similarly, the higher biochar application rate of 5% significantly increased aboveground ryegrass biomass yield. However, no differences in N2O emissions and ryegrass biomass yields were observed between regular and nutrient-enriched biochar treatments, although mineral N leaching tended to be lower in the nutrient-enriched biochar treatment than in the regular biochar treatment. The 15N analysis revealed that biochar application increased the plant uptake of added nitrate, but reduced the plant uptake of added ammonium compared to the fertilizer only treatment. Thus, the uptake of total N derived from added NH4NO3 fertilizer was not affected by the biochar addition, and cannot explain the increase in plant biomass in biochar treatments. Instead, the increased plant biomass at the higher biochar application rate was attributed to the enhanced uptake of N derived from soil. This suggests that the interactions between biochar and native soil organic N may be important determinants of the availability of soil N to plant growth.


Agronomy ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1368
Author(s):  
Wenzheng Tang ◽  
Wene Wang ◽  
Dianyu Chen ◽  
Ningbo Cui ◽  
Haosheng Yang ◽  
...  

In order to meet the growing food demand of the global population and maintain sustainable soil fertility, there is an urgent need to optimize fertilizer application amount in agricultural production practices. Most of the existing studies on the optimal K rates for apple orchards were based on case studies and lack information on optimizing K-fertilizer management on a regional scale. Here, we used the method of combining meta-analysis with the K application rate-yield relationship model to quantify and summarize the optimal K rates of the Loess Plateau and Bohai Bay regions in China. We built a dataset based on 159 observations obtained from 18 peer-reviewed literature studies distributed in 15 different research sites and evaluated the regional-scale optimal K rates for apple production. The results showed that the linear plus platform model was more suitable for estimating the regional-scale optimal K rates, which were 208.33 and 176.61 kg K ha−1 for the Loess Plateau and Bohai Bay regions of China, respectively. Compared with high K application rates, the optimal K rates increased K use efficiency by 45.88–68.57%, with almost no yield losses. The optimal K rates also enhanced the yield by 6.30% compared with the low K application rates.


Weed Science ◽  
1988 ◽  
Vol 36 (6) ◽  
pp. 784-786 ◽  
Author(s):  
Stephen J. Harvey ◽  
Robert M. Nowierski

The growth and development of leafy spurge (Euphorbia esulaL. #3EPHES) collected during postsenescent dormancy and grown in the greenhouse was increasingly stimulated by chilling treatments longer than 14 days duration at 0 to 6 C. Production of stems with flower buds, primary flowers, and secondary flowers was greater in plants chilled for 42 days or more. The effects of chilling on total number of stems, number of strictly vegetative stems, or number of stems with vegetative branching were not significant. The height of the tallest stem per pot was influenced by chilling longer than 42 days. Growth rate also increased as a function of chilling duration. Based on our findings, we believe that there is little possibility that any significant growth can occur in the postsenescent period because of the prevailing climatic conditions found in areas of leafy spurge distribution in North America.


2018 ◽  
Vol 40 (3) ◽  
pp. 304-312 ◽  
Author(s):  
Lais Tessari Perboni ◽  
Dirceu Agostinetto ◽  
Leandro Vargas ◽  
Joanei Cechin ◽  
Renan Ricardo Zandoná ◽  
...  

Abstract: The goals of this study were to evaluate herbicide application rates at different timings for preharvest desiccation of wheat (Trial 1), as well as to evaluate the effect of the timing of herbicide desiccation at preharvest and harvest timing (Trial 2) on yield, germination, and herbicide residue in wheat seed. In Trial 1, treatments consisted of two application rates of glufosinate, glyphosate, paraquat, or paraquat+diuron and a control without application; application time periods were in the milk grain to early dough stage, soft dough to hard dough stage, and hard dough stage. In Trial 2, treatments consisted of different application time periods (milk grain to early dough stage, and soft dough to hard dough stage), different herbicides (glufosinate, 2,4-D+glyphosate, and untreated control), and different harvest times (5, 10 and 15 days after herbicide application). One thousand seeds weight, yield, first and final germination count, and herbicide residue on seeds were evaluated. Preharvest desiccation with paraquat, glufosinate, and 2,4-D+glyphosate at the milk grain to early dough stage reduces wheat yield. Regardless of the herbicide and application rate, application in the milk grain to early dough stage and soft dough to hard dough stage provides greater germination of wheat seeds, except at the lower dose of paraquat. Systemic herbicides accumulate more in wheat seeds.


Sign in / Sign up

Export Citation Format

Share Document