Emotional responses to music: The need to consider underlying mechanisms

2008 ◽  
Vol 31 (5) ◽  
pp. 559-575 ◽  
Author(s):  
Patrik N. Juslin ◽  
Daniel Västfjäll

AbstractResearch indicates that people value music primarily because of the emotions it evokes. Yet, the notion of musical emotions remains controversial, and researchers have so far been unable to offer a satisfactory account of such emotions. We argue that the study of musical emotions has suffered from a neglect of underlying mechanisms. Specifically, researchers have studied musical emotions without regard to how they were evoked, or have assumed that the emotions must be based on the “default” mechanism for emotion induction, a cognitive appraisal. Here, we present a novel theoretical framework featuring six additional mechanisms through which music listening may induce emotions: (1) brain stem reflexes, (2) evaluative conditioning, (3) emotional contagion, (4) visual imagery, (5) episodic memory, and (6) musical expectancy. We propose that these mechanisms differ regarding such characteristics as their information focus, ontogenetic development, key brain regions, cultural impact, induction speed, degree of volitional influence, modularity, and dependence on musical structure. By synthesizing theory and findings from different domains, we are able to provide the first set of hypotheses that can help researchers to distinguish among the mechanisms. We show that failure to control for the underlying mechanism may lead to inconsistent or non-interpretable findings. Thus, we argue that the new framework may guide future research and help to resolve previous disagreements in the field. We conclude that music evokes emotions through mechanisms that are not unique to music, and that the study of musical emotions could benefit the emotion field as a whole by providing novel paradigms for emotion induction.

2017 ◽  
Vol 121 (5) ◽  
pp. 792-814 ◽  
Author(s):  
Auretta S. Kummar

Research in the neuroscience of mindfulness has grown rapidly in recent years. This includes empirical investigations into structural and functional changes in several brain regions—particularly, the hippocampus, the prefrontal cortex, and the amygdala—in association with the practice of mindfulness. Of interest to the current paper is that such brain regions are also implicated in empirical research focusing on fear extinction. While fear extinction has, therefore, been suggested as one of the possible mechanisms to underlie the positive effects of mindfulness, the conceptual links and research implications have lacked specific focus and detailed discussion in the literature. The purpose of this paper is, therefore, two-fold. First, this paper briefly reviews the extant literature on the neuropsychological mechanisms underlying mindfulness—particularly that, which has been found to be similarly implied in fear extinction—and hence, suggests future research directions based on its current state in the literature. Second, this paper explores the implications of this for fear-based psychopathologies, specifically for posttraumatic stress disorder (PTSD). Discussion from this paper suggests the idea of fear extinction as an underlying mechanism of mindfulness to be one that is still preliminary, yet promising; in turn, elucidating the need for further methodologically rigorous study to specifically determine fear extinction as a result of mindfulness, as well as to incorporate neuroimaging techniques in supporting the existing literature that have found preliminary support of mindfulness for PTSD.


2020 ◽  
Vol 3 ◽  
pp. 205920432095958
Author(s):  
Sarah Hashim ◽  
Lauren Stewart ◽  
Mats B. Küssner

Visual mental imagery has been proposed to be an underlying mechanism of music-induced emotion, yet very little is known about the phenomenon due to its ephemeral nature. The present study utilised a saccadic eye-movement task designed to suppress visual imagery during music listening. Thirty-five participants took part in Distractor (eye-movement) and Control (blank screen) conditions, and reported the prevalence, control, and vividness of their visual imagery, and felt emotion ratings using the GEMS-9 in response to short excerpts of film music. The results show that the eye-movement task was highly effective in reducing ratings for prevalence and vividness of visual imagery, and for one GEMS item, Nostalgia, but was not successful in reducing control of imagery or the remaining GEMS items in response to the music. This represents a novel approach to understanding the potentially causal role of visual imagery on music-induced emotion, on which future research can build by considering the attentional mechanisms that a distraction task may pose during music-induced visual imagery formation.


2012 ◽  
Vol 108 (12) ◽  
pp. 3289-3300 ◽  
Author(s):  
Evelina Fedorenko ◽  
Josh H. McDermott ◽  
Sam Norman-Haignere ◽  
Nancy Kanwisher

Evidence from brain-damaged patients suggests that regions in the temporal lobes, distinct from those engaged in lower-level auditory analysis, process the pitch and rhythmic structure in music. In contrast, neuroimaging studies targeting the representation of music structure have primarily implicated regions in the inferior frontal cortices. Combining individual-subject fMRI analyses with a scrambling method that manipulated musical structure, we provide evidence of brain regions sensitive to musical structure bilaterally in the temporal lobes, thus reconciling the neuroimaging and patient findings. We further show that these regions are sensitive to the scrambling of both pitch and rhythmic structure but are insensitive to high-level linguistic structure. Our results suggest the existence of brain regions with representations of musical structure that are distinct from high-level linguistic representations and lower-level acoustic representations. These regions provide targets for future research investigating possible neural specialization for music or its associated mental processes.


2018 ◽  
Author(s):  
Richard A. I Bethlehem ◽  
Jakob Seidlitz ◽  
Rafael Romero-Garcia ◽  
Guillaume Dumas ◽  
Michael V. Lombardo

AbstractUnderstanding heterogeneity in neural phenotypes is an important goal on the path to precision medicine for autism spectrum disorders (ASD). Age is a critically important variable in normal structural brain development and examining structural features with respect to age-related norms could help to explain ASD heterogeneity in neural phenotypes. Here we examined how cortical thickness (CT) in ASD can be parameterized as an individualized metric of deviance relative to typically-developing (TD) age-related norms. Across a large sample (n=870 per group) and wide age range (5-40 years), we applied a normative modelling approach that provides individualized whole-brain maps of age-related CT deviance in ASD. This approach isolates a subgroup of ASD individuals with highly age-deviant CT. The median prevalence of this ASD subgroup across all brain regions is 7.6%, and can reach as high as 10% for some brain regions. This work showcases an individualized approach for understanding ASD heterogeneity that could potentially further prioritize work on a subset of individuals with significant cortical pathophysiology represented in age-related CT deviance. Rather than cortical thickness pathology being a widespread characteristic of most ASD patients, only a small subset of ASD individuals are actually highly deviant relative to age-norms. These individuals drive small on-average effects from case-control comparisons. Rather than sticking to the diagnostic label of autism, future research should pivot to focus on isolating subsets of autism patients with highly deviant phenotypes and better understand the underlying mechanisms that drive those phenotypes.


TAPPI Journal ◽  
2018 ◽  
Vol 17 (01) ◽  
pp. 31-37
Author(s):  
Bryan McCulloch ◽  
John Roper ◽  
Kaitlin Rosen

Barrier coatings are used in applications including food packaging, dry goods, and consumer products to prevent transport of different compounds either through or into paper and paperboard substrates. These coatings are useful in packaging to contain active ingredients, such as fragrances, or to protect contents from detrimental substances, such as oxygen, water, grease, or other chemicals of concern. They also are used to prevent visual changes or mechanical degradation that might occur if the paper becomes saturated. The performance and underlying mechanism depends on the barrier coating type and, in particular, on whether the barrier coating is designed to prevent diffusive or capillary transport. Estimates on the basis of fundamental transport phenomena and data from a broad screening of different barrier materials can be used to understand the limits of various approaches to construct barrier coatings. These estimates also can be used to create basic design rules for general classes of barrier coatings.


2018 ◽  
Author(s):  
Jay Joseph Van Bavel

We review literature from several fields to describe common experimental tasks used to measure human cooperation as well as the theoretical models that have been used to characterize cooperative decision-making, as well as brain regions implicated in cooperation. Building on work in neuroeconomics, we suggest a value-based account may provide the most powerful understanding the psychology and neuroscience of group cooperation. We also review the role of individual differences and social context in shaping the mental processes that underlie cooperation and consider gaps in the literature and potential directions for future research on the social neuroscience of cooperation. We suggest that this multi-level approach provides a more comprehensive understanding of the mental and neural processes that underlie the decision to cooperate with others.


2019 ◽  
Vol 53 (4) ◽  
pp. 685-707
Author(s):  
Nguyen Pham ◽  
Maureen Morrin ◽  
Melissa G. Bublitz

Purpose This paper aims to examine how repeated exposure to health-related products that contain flavors (e.g. cherry-flavored cough syrup) create “flavor halos” that can bias perceptions about the healthfulness of foods that contain the same flavors (e.g. cherry-flavored cheesecake). Design/methodology/approach Six experiments, using both between- and within-subjects designs, explore the effects of flavor halos in hypothetical and actual consumption settings. They test the underlying mechanism, rule out competing explanations and identify an opportunity to correct the cognitive biases created by flavor halos. Findings Flavor halos can be created via repeated exposure to flavored medicinal products in the marketplace. These flavor halos bias dieters’ judgments about the healthfulness of vice foods containing such flavors. Dieters are motivated toward a directional conclusion about food healthfulness to mediate the guilt associated with consuming indulgent products. Providing dieters with corrective information mitigates these effects. Research limitations/implications The authors examine one way flavor halos are created –via repeated exposure to flavored medicinal products. Future research should explore other ways flavor halos are created and other ways to mitigate their effects. Practical implications Considering the prevalence of obesity, organizations striving to help consumers pursue health goals (e.g. weight watchers) can use flavors to improve dietary compliance. Health-care organizations can help consumers understand and correct the cognitive biases associated with flavor halos. Originality/value By identifying flavor halos, this work adds to the literature investigating how flavors influence consumers’ judgments about healthfulness. The results suggest dieters apply flavor halos as they engage in motivated reasoning to license their indulgent desires.


Vaccines ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 559
Author(s):  
Piotr Rzymski ◽  
Bartłomiej Perek ◽  
Robert Flisiak

The rollout of COVID-19 vaccines brings hope for successful pandemic mitigation and getting the transmission of SARS-CoV-2 under control. The vaccines authorized in Europe displayed a good safety profile in the clinical trials. However, during their post-authorization use, unusual thrombotic events associated with thrombocytopenia have rarely been reported for vector vaccines. This led to the temporary suspension of the AZD1222 vaccine (Oxford/AstraZeneca) in various European countries and the Ad26.COV2 vaccine (Janssen/Johnson&Johnson) in the United States, with regulatory bodies launching investigations into potential causal associations. The thromboembolic reactions were also rarely reported after mRNA vaccines. The exact cause of these adverse effects remains to be elucidated. The present paper outlines the hypotheses on the mechanisms behind the very rare thrombotic thrombocytopenia reported after the COVID-19 vaccination, along with currently existing evidence and future research prospects. The following are discussed: (i) the role of antibodies against platelet factor 4 (PF4), (ii) the direct interaction between adenoviral vector and platelets, (iii) the cross-reactivity of antibodies against SARS-CoV-2 spike protein with PF4, (iv) cross-reactivity of anti-adenovirus antibodies and PF4, (v) interaction between spike protein and platelets, (vi) the platelet expression of spike protein and subsequent immune response, and (vii) the platelet expression of other adenoviral proteins and subsequent reactions. It is also plausible that thrombotic thrombocytopenia after the COVID-19 vaccine is multifactorial. The elucidation of the causes of these adverse events is pivotal in taking precautionary measures and managing vaccine hesitancy. It needs to be stressed, however, that the reported cases are currently sporadic and that the benefits of COVID-19 vaccines vastly outweigh their potential risks.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Damien S. Fleur ◽  
Bert Bredeweg ◽  
Wouter van den Bos

AbstractMetacognition comprises both the ability to be aware of one’s cognitive processes (metacognitive knowledge) and to regulate them (metacognitive control). Research in educational sciences has amassed a large body of evidence on the importance of metacognition in learning and academic achievement. More recently, metacognition has been studied from experimental and cognitive neuroscience perspectives. This research has started to identify brain regions that encode metacognitive processes. However, the educational and neuroscience disciplines have largely developed separately with little exchange and communication. In this article, we review the literature on metacognition in educational and cognitive neuroscience and identify entry points for synthesis. We argue that to improve our understanding of metacognition, future research needs to (i) investigate the degree to which different protocols relate to the similar or different metacognitive constructs and processes, (ii) implement experiments to identify neural substrates necessary for metacognition based on protocols used in educational sciences, (iii) study the effects of training metacognitive knowledge in the brain, and (iv) perform developmental research in the metacognitive brain and compare it with the existing developmental literature from educational sciences regarding the domain-generality of metacognition.


2021 ◽  
Vol 22 (8) ◽  
pp. 4167
Author(s):  
Xiaonan Sun ◽  
Jalen Alford ◽  
Hongyu Qiu

Mitochondria undergo structural and functional remodeling to meet the cell demand in response to the intracellular and extracellular stimulations, playing an essential role in maintaining normal cellular function. Merging evidence demonstrated that dysregulation of mitochondrial remodeling is a fundamental driving force of complex human diseases, highlighting its crucial pathophysiological roles and therapeutic potential. In this review, we outlined the progress of the molecular basis of mitochondrial structural and functional remodeling and their regulatory network. In particular, we summarized the latest evidence of the fundamental association of impaired mitochondrial remodeling in developing diverse cardiac diseases and the underlying mechanisms. We also explored the therapeutic potential related to mitochondrial remodeling and future research direction. This updated information would improve our knowledge of mitochondrial biology and cardiac diseases’ pathogenesis, which would inspire new potential strategies for treating these diseases by targeting mitochondria remodeling.


Sign in / Sign up

Export Citation Format

Share Document