The Effect of Vacuum on the Structure of Vapor Deposited In, V, and Mn

Author(s):  
L. E. Murr

It has been observed by transmission and diffraction electron microscopy that the nominal background pressure just prior to the vapor deposition of certain metals, particularly those possessing more than one structure possibility, can be influential in determining the crystallographic structural phase which will form. Previous experimental investigations along this line have also revealed the fact that the nominal system pressure influences such structural features as grain size and epitaxy.

Author(s):  
L.I. Trischkina ◽  
T.V. Cherkasova ◽  
A.A. Klopotov ◽  
A.I. Potekaev ◽  
V.V. Kulagina

New concepts of dislocation physics of plasticity and strength are considered using quantitative methods of transmission diffraction electron microscopy. New concepts of dislocation physics of plasticity and strength are considered using quantitative methods of transmission diffraction electron microscopy. The analysis of changes in the parameters of the dislocation substructure (DSS) is given on the example of alloys Cu-0.5 and 14 аt. % Al and the influence of these parameters on the change in the substructure of the material at a temperature T=293 K is considered. It is shown that at each stage of deformation, there are usually two substructures ("old" and "new"). The blurring of the transition from stage to stage is associated with the presence of weakly stable pre-transition structural-phase States at certain degrees of deformation of several types of substructures simultaneously, i.e., a weakly stable structural-phase state of the system. Against the background of the "old" substructure, a "new" one is born, which in the process of deformation becomes the main one, and then the "old" one, in the depths of which another substructure is formed. Experimental evidence of this regularity is obtained for FCC alloys. The presence of grain boundaries complicates the diagrams: a third substructure is formed near the grain boundaries, which corresponds to the following substructures (later) in the sequence of DSS transformations.


2014 ◽  
Vol 1642 ◽  
Author(s):  
E. Hatzikraniotis ◽  
G.S. Polymeris ◽  
C.B. Lioutas ◽  
A. Burkov ◽  
E-C. Stefanaki ◽  
...  

ABSTRACTIn the present work, a comparative study is attempted, dealing with the influence of the grain size distribution on the microstructure and the free carrier concentration in Mg2SnXSi1-X (x=0.2) ternary compounds doped with Sb. Structural in-homogeneities were monitored by using Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM) as well as Fourier transform infrared spectroscopy (FTIR) in the reflectivity mode.


2019 ◽  
Vol 24 (4) ◽  
pp. 69
Author(s):  
Mohammed Mustafa Rashid1 ◽  
Sabah J. Fathi2 ◽  
Rafea A. Munef ◽  
Bilal Omer Ahmed1

The nanocomposites ferrites (BaFe12O19/Ni0.3Cu0.2Zn0.5Al­0.5Fe1.5O4) with (x=10,25,50,75,90%) were prepared by sol-gel auto combustion. The micro-structural features of the samples were studied using X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques. The results were compared which show that the grain size of the nano composites which prepared by sol-gel auto combustion about (25-46) nm.   http://dx.doi.org/10.25130/tjps.24.2019.075  


Author(s):  
O.C. de Hodgins ◽  
K. R. Lawless ◽  
R. Anderson

Commercial polyimide films have shown to be homogeneous on a scale of 5 to 200 nm. The observation of Skybond (SKB) 705 and PI5878 was carried out by using a Philips 400, 120 KeV STEM. The objective was to elucidate the structural features of the polymeric samples. The specimens were spun and cured at stepped temperatures in an inert atmosphere and cooled slowly for eight hours. TEM micrographs showed heterogeneities (or nodular structures) generally on a scale of 100 nm for PI5878 and approximately 40 nm for SKB 705, present in large volume fractions of both specimens. See Figures 1 and 2. It is possible that the nodulus observed may be associated with surface effects and the structure of the polymers be regarded as random amorphous arrays. Diffraction patterns of the matrix and the nodular areas showed different amorphous ring patterns in both materials. The specimens were viewed in both bright and dark fields using a high resolution electron microscope which provided magnifications of 100,000X or more on the photographic plates if desired.


Author(s):  
U. Aebi ◽  
P. Rew ◽  
T.-T. Sun

Various types of intermediate-sized (10-nm) filaments have been found and described in many different cell types during the past few years. Despite the differences in the chemical composition among the different types of filaments, they all yield common structural features: they are usually up to several microns long and have a diameter of 7 to 10 nm; there is evidence that they are made of several 2 to 3.5 nm wide protofilaments which are helically wound around each other; the secondary structure of the polypeptides constituting the filaments is rich in ∞-helix. However a detailed description of their structural organization is lacking to date.


Author(s):  
Godfrey C. Hoskins ◽  
Betty B. Hoskins

Metaphase chromosomes from human and mouse cells in vitro are isolated by micrurgy, fixed, and placed on grids for electron microscopy. Interpretations of electron micrographs by current methods indicate the following structural features.Chromosomal spindle fibrils about 200Å thick form fascicles about 600Å thick, wrapped by dense spiraling fibrils (DSF) less than 100Å thick as they near the kinomere. Such a fascicle joins the future daughter kinomere of each metaphase chromatid with those of adjacent non-homologous chromatids to either side. Thus, four fascicles (SF, 1-4) attach to each metaphase kinomere (K). It is thought that fascicles extend from the kinomere poleward, fray out to let chromosomal fibrils act as traction fibrils against polar fibrils, then regroup to join the adjacent kinomere.


Author(s):  
R. Sinclair ◽  
B.E. Jacobson

INTRODUCTIONThe prospect of performing chemical analysis of thin specimens at any desired level of resolution is particularly appealing to the materials scientist. Commercial TEM-based systems are now available which virtually provide this capability. The purpose of this contribution is to illustrate its application to problems which would have been intractable until recently, pointing out some current limitations.X-RAY ANALYSISIn an attempt to fabricate superconducting materials with high critical currents and temperature, thin Nb3Sn films have been prepared by electron beam vapor deposition [1]. Fine-grain size material is desirable which may be achieved by codeposition with small amounts of Al2O3 . Figure 1 shows the STEM microstructure, with large (∽ 200 Å dia) voids present at the grain boundaries. Higher quality TEM micrographs (e.g. fig. 2) reveal the presence of small voids within the grains which are absent in pure Nb3Sn prepared under identical conditions. The X-ray spectrum from large (∽ lμ dia) or small (∽100 Ǻ dia) areas within the grains indicates only small amounts of A1 (fig.3).


Author(s):  
K. Doong ◽  
J.-M. Fu ◽  
Y.-C. Huang

Abstract The specimen preparation technique using focused ion beam (FIB) to generate cross-sectional transmission electron microscopy (XTEM) samples of chemical vapor deposition (CVD) of Tungsten-plug (W-plug) and Tungsten Silicides (WSix) was studied. Using the combination method including two axes tilting[l], gas enhanced focused ion beam milling[2] and sacrificial metal coating on both sides of electron transmission membrane[3], it was possible to prepare a sample with minimal thickness (less than 1000 A) to get high spatial resolution in TEM observation. Based on this novel thinning technique, some applications such as XTEM observation of W-plug with different aspect ratio (I - 6), and the grain structure of CVD W-plug and CVD WSix were done. Also the problems and artifacts of XTEM sample preparation of high Z-factor material such as CVD W-plug and CVD WSix were given and the ways to avoid or minimize them were suggested.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2849
Author(s):  
Marcin Jan Dośpiał

This paper presents domain and structure studies of bonded magnets made from nanocrystalline Nd-(Fe, Co)-B powder. The structure studies were investigated using scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), Mössbauer spectroscopy and X-ray diffractometry. On the basis of performed qualitative and quantitative phase composition studies, it was found that investigated alloy was mainly composed of Nd2(Fe-Co)14B hard magnetic phase (98 vol%) and a small amount of Nd1.1Fe4B4 paramagnetic phase (2 vol%). The best fit of grain size distribution was achieved for the lognormal function. The mean grain size determined from transmission electron microscopy (TEM) images on the basis of grain size distribution and diffraction pattern using the Bragg equation was about ≈130 nm. HRTEM images showed that over-stoichiometric Nd was mainly distributed on the grain boundaries as a thin amorphous border of 2 nm in width. The domain structure was investigated using a scanning electron microscope and metallographic light microscope, respectively, by Bitter and Kerr methods, and by magnetic force microscopy. Domain structure studies revealed that the observed domain structure had a labyrinth shape, which is typically observed in magnets, where strong exchange interactions between grains are present. The analysis of the domain structure in different states of magnetization revealed the dynamics of the reversal magnetization process.


Author(s):  
Ivan Saenko ◽  
O. Fabrichnaya

AbstractThermodynamic parameters were assessed for the MgO–FeOx system and combined with already available descriptions of ZrO2-FeOx and ZrO2-MgO systems to calculate preliminary phase diagrams for planning experimental investigations. Samples of selected compositions were heat treated at 1523, 1673 and 1873 K and characterized using x-ray and scanning electron microscopy combined with energy dispersive x-ray spectroscopy (SEM/EDX). Experiments indicated extension of cubic ZrO2 solid solution into the ternary system at 1873 K (75 mol.% ZrO2, 10 mol.% FeOx and 15 mol.% MgO) and limited solubility of 4 mol.% ZrO2 in spinel phase. Based on the obtained results thermodynamic parameters of C-ZrO2 and spinel phase were optimized.


Sign in / Sign up

Export Citation Format

Share Document