S.E.M. Fractography of Ultrasonic Fatigue in L65 Aluminum Alloy

Author(s):  
K C H Ashley ◽  
R W Ditchfield ◽  
G A McD Downie

An aluminium alloy (L65) was fatigue tested in a longitudinal tension compression mode at a frequency of 20 kHz with a mean strain of 1.65.10-3. The specimens used were simple cylinderical rods of fully hardened, solution heat treated or fully annealed aluminium alloy. The effects of the variation in heat treatment on the nature of fracture were investigated by examining the fracture surfaces of these specimens in a Cambridge S4-10 scanning electron microscope.The fracture surfaces of the fully hardened alloy exhibited the characteristics of cleavage fracture (Stage I and Stage II cracking) in agreement with Forsyth's theories. Occasionally these specimens underwent an unusual mode of centre initiated failure for which the fatigue endurance was greater than that experienced following the surface initiation in similar specimens.

2018 ◽  
Vol 172 ◽  
pp. 03004
Author(s):  
A. Sivasubramanian ◽  
T.S. Kirubasankar ◽  
S. Vinoth kumar

This paper involves the study of fatigue life of coated aluminium alloy Al 7075-T651 that is heat-treated under 100oC soaked in castor oil for three days. The specimen after heat treatment is subjected to fatigue test using rotary bending machine for number of cycles to fail under cyclic load of 15kgf, 25Kgf, and 50kgf.The life of the specimen is found and compared with uncoated specimen and improved life in number of cycle is noticed. The crack propagation and its type is analysed using scanning electron microscope for knowing the point of fracture and its initiation to failure.


2014 ◽  
Vol 217-218 ◽  
pp. 274-280
Author(s):  
Kang Du ◽  
Da Quan Li ◽  
Xiao Kang Liang ◽  
Qiang Zhu

Turbocharger impellers undergo extreme cyclic speed conditions and thus fatigue fracture in service. Any kind of defects, even defects with sizes of tens of micrometres, can make significant impact on service life of the impellers. The alloy used for thixocast impellers is the aluminum alloy 319s. T61 heat treatment is used to improve mechanical properties. However, the solution treatment in the standard T61 heat treatment of the 319s alloy can induce incipient melting defects. This paper carried out systematic study of formation of defects caused by the incipient melting during solution treatment in the thixocast and heat treated impellers, using optical and scanning electron microscope. Based on the study, the critical temperature of incipient melting is detected. An optimized two-stage solution treatment is therefore proposed.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4237
Author(s):  
Takuma Tanaka ◽  
Togo Sugioka ◽  
Tatsuya Kobayashi ◽  
Ikuo Shohji ◽  
Yuya Shimada ◽  
...  

The effect of heat treatment on tensile and low cycle fatigue properties of the oxygen-free copper for electric power equipment was investigated. The heat treatment at 850 °C for 20 min, which corresponds to the vacuum brazing process, caused the grain growth and relaxation of strain by recrystallization, and thus, the residual stress in the oxygen-free copper was reduced. The tensile strength and 0.2% proof stress were decreased, and elongation was increased by the heat treatment accompanying recrystallization. The plastic strain in the heat-treated specimen was increased compared with that in the untreated specimen under the same stress amplitude condition, and thus, the low cycle fatigue life of the oxygen-free copper was degraded by the heat treatment. Striation was observed in the crack initiation area of the fractured surface in the case of the stress amplitude less than 100 MPa regardless of the presence of the heat treatment. With an increase in the stress amplitude, the river pattern and the quasicleavage fracture were mainly observed in the fracture surfaces of the untreated specimens, and they were observed with striations in the fracture surfaces of the heat-treated ones. The result of the electron backscattered diffraction (EBSD) analysis showed that the grain reference orientation deviation (GROD) map was confirmed to be effective to investigate the fatigue damage degree in the grain by low cycle fatigue. In addition, the EBSD analysis revealed that the grains were deformed, and the GROD value reached approximately 28° in the fractured areas of heat-treated specimens after the low cycle fatigue test.


2010 ◽  
Vol 667-669 ◽  
pp. 925-930
Author(s):  
S.V. Krymskiy ◽  
Elena Avtokratova ◽  
M.V. Markushev ◽  
Maxim Yu. Murashkin ◽  
O.S. Sitdikov

The effects of severe plastic deformation (SPD) by isothermal rolling at the temperature of liquid nitrogen combined with prior- and post-SPD heat treatment, on microstructure and hardness of Al-4.4%Cu-1.4%Mg-0.7%Mn (D16) alloy were investigated. It was found no nanostructuring even after straining to 75%. Сryodeformation leads to microshear banding and processing the high-density dislocation substructures with a cell size of ~ 100-200 nm. Such a structure remains almost stable under 1 hr annealing up to 200oC and with further temperature increase initially transforms to bimodal with a small fraction of nanograins and then to uniform coarse grained one. It is found the change in the alloy post–SPD aging response leading to more active decomposition of the preliminary supersaturated aluminum solid solution, and to the alloy extra hardening under aging with shorter times and at lower temperatures compared to T6 temper.


2018 ◽  
Vol 275 ◽  
pp. 81-88
Author(s):  
Monika Karoń ◽  
Marcin Adamiak

The purpose of this paper is to present the microstructure and mechanical behavior of 6060 aluminum alloy after intense plastic deformation. Equal Channel Angular Pressing (ECAP) was used as a method of severe plastic deformation. Before ECAP part of the samples were heat treated to remove internal stresses in the commercially available aluminium alloy. The evolution of microstructure and tensile strength were tested after 1, 3, 6 and 9 ECAP passes in annealed and non annealed states. It was found that intensely plastically deformed refined grains were present in the tested samples and exhibited increased mechanical properties. Differences were noted between samples without and after heat treatment


Metals ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 324 ◽  
Author(s):  
Marcin Chybiński ◽  
Łukasz Polus ◽  
Maria Ratajczak ◽  
Piotr Sielicki

The present study focused on the behaviour of the AW-6060 aluminium alloy in peak temper condition T6 under a wide range of loads: tensile loading, projectile and explosion. The alloy is used as a structural component of civil engineering structures exposed to static or dynamic loads. Therefore, it was crucial to determine the material’s behaviour at low and intermediate rates of deformation. Despite the fact that the evaluation of the strain rate sensitivity of the AW-6060 aluminium alloy has already been discussed in literature, the authors of this paper wished to further investigate this topic. They conducted tensile tests and confirmed the thesis that the AW-6060 T6 aluminium alloy has low strain rate sensitivity at room temperature. In addition, the fracture surfaces subjected to different loading (tensile loading, projectile and explosion) were investigated and compared using a scanning electron microscope, because the authors of this paper were trying to develop a new methodology for predicting how samples had been loaded before failure occurred based on scanning electron microscopy (SEM) micrographs. Projectile and explosion tests were performed mainly for the SEM observation of the fracture surfaces. These tests were unconventional and they represent the originality of this research. It was found that the type of loading had an impact on the fracture surface.


2020 ◽  
Vol 856 ◽  
pp. 36-42
Author(s):  
Chuleeporn Paa-Rai

This work investigates the effect of rejuvenation heat treatment, with double-step solution treatment at the temperature from 1150 °C to 1200 °C, on the recovered microstructure of IN-738 cast superalloy. The superalloy has been long-term exposed as a turbine blade in a gas turbine prior to this study. After double solution treatment and aging at 845 °C for 12 h and 24 h, the recovered microstructures were examined by using a scanning electron microscope. Coarse γ΄ particles, that have presented in damaged microstructures, could not be observed in the samples after the rejuvenation heat treatment. In addition, the image analysis illustrates that the reprecipitated γ΄ particles in the samples with double-step solution treatments increase significantly in sizes during aging than that in the samples with the single-step solution treatment. Furthermore, the measurement of the samples hardness presents that the as-receive sample hardness is improved after rejuvenation heat treatment studied in this work.


2014 ◽  
Vol 699 ◽  
pp. 227-232
Author(s):  
Nurulhilmi Zaiedah Nasir ◽  
Mohd Ahadlin Mohd Daud ◽  
Mohd Zulkefli Selamat ◽  
Ahmad Rivai ◽  
Sivakumar Dhar Malingam

This paper investigated the effect of heat treatment on mechanical properties and microstructure of 6061 aluminium alloy. The aluminium alloys were examined in the heat treated conditions, using different quenching media, water and oil. The alloy was solution heat treated at temperature of 529oC for one, three and five hour respectively. Aging treatment was carried out at temperature of 160oC which is assumed to be the best temperature for ageing process. Hardness measurement was carried out using a Brinell Hardness Tester Machine. The results shows hardness and impact strength are inversely proportional to each other, as the hardness of 6061 aluminium alloy decreases and impact strength increases.


2013 ◽  
Vol 856 ◽  
pp. 231-235 ◽  
Author(s):  
Aditya Eswar ◽  
Arnav Gupta ◽  
G. Dinesh Babu ◽  
M. Nageswara Rao

Automotive industry makes wide scale use of cast aluminium alloy 354 in the production of crucial components, such as compressor wheels for turbochargers. The compressor wheels undergo T61 heat treatment, involving artificial ageing at 188°C. This study focuses on the possible improvement of the mechanical behaviour of the components by subjecting them to modified heat treatments involving usage of lower artificial ageing temperatures (160, 171 and 177°C). A comparative analysis of tensile properties and strain hardening behaviour has been carried out with different artificial ageing temperatures. Results showed that the heat treatment routinely employed by the industry (aged at 188°C) leads to overageing, thereby resulting in relatively inferior mechanical properties and lower strain hardening rates as compared to the samples heat treated at lower artificial ageing temperatures. It is concluded that lowering of the artificial ageing temperature can lead to a superior state of components with respect to mechanical behaviour.


2016 ◽  
Vol 51 (14) ◽  
pp. 1971-1977 ◽  
Author(s):  
NH Noor Mohamed ◽  
Hitoshi Takagi ◽  
Antonio N Nakagaito

The mechanical properties of cellulose nanofiber-reinforced polyvinyl alcohol composite were studied. Neat polyvinyl alcohol films, cellulose nanofiber sheets, and their nanocomposites containing cellulose nanofiber weight ratios of 5, 15, 30, 40, 45, 50 and 80 wt% were fabricated. Heat treatment by hot pressing at 180℃ was conducted on the specimens to study its effect to the mechanical properties and the results were compared with the non heat-treated specimens. Morphology of the composites was studied by scanning electron microscopy and the mechanical properties were evaluated by means of tensile tests. The results showed that increase of cellulose nanofiber content from 5 wt% to 80 wt% has increased the tensile strength of the composites up to 180 MPa, with cellulose nanofiber content higher than 40 wt% yielding higher tensile strength. The heat-treated specimens exhibited higher tensile strength compared to those of untreated specimens.


Sign in / Sign up

Export Citation Format

Share Document