scholarly journals Antimicrobial resistance of Salmonella enterica Typhimurium DT104 isolates and investigation of strains with transferable apramycin resistance

1997 ◽  
Vol 118 (2) ◽  
pp. 97-103 ◽  
Author(s):  
J. C. LOW ◽  
M. ANGUS ◽  
G. HOPKINS ◽  
D. MUNRO ◽  
S. C. RANKIN

An examination of salmonella isolates collected by the Scottish Agricultural College Veterinary Services Division from April 1994 to May 1995 was conducted to determine the extent to which Salmonella enterica serotype Typhimurium phage type 104 (DT104) occurred and to investigate the antimicrobial resistance patterns of isolates. Typhimurium DT104 was the predominant salmonella and was isolated from nine species of animal. All isolates of this phage type possessed resistance to at least one antimicrobial and 98% of the isolates were resistant to multiple antimicrobials with R-type ACTSp the predominant resistance pattern. Various other resistance patterns were identified and transferable resistance to the veterinary aminoglycoside antimicrobial apramycin was demonstrated in three strains. A retrospective study for gentamicin resistance in isolates from the Scottish Salmonella Reference Laboratory collection revealed a human isolate of Typhimurium DT104 resistant to gentamicin but sensitive to apramycin and a bovine isolate with apramycin and gentamicin resistance.

2021 ◽  
Vol 9 (5) ◽  
pp. 952
Author(s):  
Nure Alam Siddiky ◽  
Md Samun Sarker ◽  
Md. Shahidur Rahman Khan ◽  
Ruhena Begum ◽  
Md. Ehsanul Kabir ◽  
...  

Virulent and multi drug resistant (MDR) Salmonellaenterica is a foremost cause of foodborne diseases and had serious public health concern globally. The present study was undertaken to identify the pathogenicity and antimicrobial resistance (AMR) profiles of Salmonellaenterica serovars recovered from chicken at wet markets in Dhaka, Bangladesh. A total of 870 cecal contents of broiler, sonali, and native chickens were collected from 29 wet markets. The overall prevalence of S. Typhimurium, S. Enteritidis, and untyped Salmonella spp., were found to be 3.67%, 0.57%, and 1.95% respectively. All isolates were screened by polymerase chain reaction (PCR) for eight virulence genes, namely invA, agfA, IpfA, hilA, sivH, sefA, sopE, and spvC. S. Enteritidis isolates carried all virulence genes whilst S. Typhimurium isolates carried six virulence genes except sefA and spvC. A diverse phenotypic and genotypic AMR pattern was found. Harmonic descending trends of resistance patterns were observed among the broiler, sonali, and native chickens. Interestingly, virulent and MDR Salmonella enterica serovars were found in native chicken, although antimicrobials were not used in their production cycle. The research findings anticipate that virulent and MDR Salmonella enterica are roaming in the wet markets which can easily anchor to the vendor, consumers, and in the food chain.


2006 ◽  
Vol 69 (4) ◽  
pp. 743-748 ◽  
Author(s):  
WONDWOSSEN A. GEBREYES ◽  
SIDDHARTHA THAKUR ◽  
W. E. MORGAN MORROW

Conventional swine production evolved to routinely use antimicrobials, and common occurrence of antimicrobial-resistant Salmonella has been reported. There is a paucity of information on the antimicrobial resistance of Salmonella in swine production in the absence of antimicrobial selective pressure. Therefore, we compared the prevalence and antimicrobial resistance of Salmonella isolated from antimicrobial-free and conventional production systems. A total of 889 pigs and 743 carcasses were sampled in the study. Salmonella prevalence was significantly higher among the antimicrobial-free systems (15.2%) than the conventional systems (4.2%) (odds ratio [OR] = 4.23; P < 0.05). Antimicrobial resistance was detected against 10 of the 12 antimicrobials tested. The highest frequency of resistance was found against tetracycline (80%), followed by streptomycin (43.4%) and sulfamethoxazole (36%). Frequency of resistance to most classes of antimicrobials (except tetracycline) was significantly higher among conventional farms than antimicrobial-free farms, with ORs ranging from 2.84 for chloramphenicol to 23.22 for kanamycin at the on-farm level. A total of 28 antimicrobial resistance patterns were detected. A resistance pattern with streptomycin, sulfamethoxazole, and tetracycline (n = 130) was the most common multidrug resistance pattern. There was no significant difference in the proportion of isolates with this pattern between the conventional (19.5%) and the antimicrobial-free systems (18%) (OR = 1.8; P > 0.05). A pentaresistance pattern with ampicillin, chloramphenicol, streptomycin, sulfamethoxazole, and tetracycline was strongly associated with antimicrobial-free groups (OR = 5.4; P = 0.01). While showing the higher likelihood of finding antimicrobial resistance among conventional herds, this study also implies that specific multidrug-resistant strains may occur on antimicrobial-free farms. A longitudinal study with a representative sample size is needed to reach more conclusive results of the associations detected in this study.


2018 ◽  
Vol 146 (4) ◽  
pp. 409-422 ◽  
Author(s):  
D. Mueller-Doblies ◽  
K. C. R. Speed ◽  
S. Kidd ◽  
R. H. Davies

AbstractIn this retrospective study, we describe and analyse Salmonella data from four livestock species in Great Britain between 1983 and 2014, focusing on Salmonella Typhimurium. A total of 96 044 Salmonella isolates were obtained during the study period. S. Typhimurium was the predominant serovar isolated from cattle and pigs and represented 40.7% (18 455/45 336) and 58.3% (4495/7709) of isolates from these species respectively, while it only accounted for 6.7% (2114/31 492) of chicken isolates and 8.1% (926/11 507) of turkey isolates. Over the study period, DT104 was the most common phage type in all four species; however, DT104 peaked in occurrence between 1995 and 1999, but is currently rare.Monophasic strains of S. Typhimurium represented less than 3% of all Salmonella isolates in cattle and chickens in 2014, but accounted for 10.4% of all turkey isolates and 39.0% of all pig isolates in the same year.Salmonella isolates were tested for their in vitro susceptibility to 16 antimicrobials. Antimicrobial resistance of S. Typhimurium isolates is largely influenced by the dominance of specific phage types at a certain time, which are commonly associated with particular resistance patterns. Changes in resistance patterns over time were analysed and compared between species.


Antibiotics ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 660
Author(s):  
Xuebin Xu ◽  
Silpak Biswas ◽  
Guimin Gu ◽  
Mohammed Elbediwi ◽  
Yan Li ◽  
...  

Salmonella spp. are recognized as important foodborne pathogens globally. Salmonella enterica serovar Rissen is one of the important Salmonella serovars linked with swine products in numerous countries and can transmit to humans by food chain contamination. Worldwide emerging S. Rissen is considered as one of the most common pathogens to cause human salmonellosis. The objective of this study was to determine the antimicrobial resistance properties and patterns of Salmonella Rissen isolates obtained from humans, animals, animal-derived food products, and the environment in China. Between 2016 and 2019, a total of 311 S. Rissen isolates from different provinces or province-level cities in China were included here. Bacterial isolates were characterized by serotyping and antimicrobial susceptibility testing. Minimum inhibitory concentration (MIC) values of 14 clinically relevant antimicrobials were obtained by broth microdilution method. S. Rissen isolates from humans were found dominant (67%; 208/311). S. Rissen isolates obtained from human patients were mostly found with diarrhea. Other S. Rissen isolates were acquired from food (22%; 69/311), animals (8%; 25/311), and the environment (3%; 9/311). Most of the isolates were resistant to tetracycline, trimethoprim-sulfamethoxazole, chloramphenicol, streptomycin, sulfisoxazole, and ampicillin. The S. Rissen isolates showed susceptibility against ceftriaxone, ceftiofur, gentamicin, nalidixic acid, ciprofloxacin, and azithromycin. In total, 92% of the S. Rissen isolates were multidrug-resistant and ASSuT (27%), ACT (25%), ACSSuT (22%), ACSSuTAmc (11%), and ACSSuTFox (7%) patterns were among the most prevalent antibiotic resistance patterns found in this study. The widespread dissemination of antimicrobial resistance could have emerged from misuse of antimicrobial agents in animal husbandry in China. These findings could be useful for rational antimicrobial usage against Salmonella Rissen infections.


2007 ◽  
Vol 70 (6) ◽  
pp. 1502-1506 ◽  
Author(s):  
RAFAEL JESÚS ASTORGA MÁRQUEZ ◽  
AURORA ECHEITA SALABERRIA ◽  
ALFONSO MALDONADO GARCÍA ◽  
SILVIA VALDEZATE JIMENEZ ◽  
ALFONSO CARBONERO MARTINEZ ◽  
...  

The prevalence of and the antibiotic resistance shown by Salmonella isolated from pigs in Andalusia (southern Spain) is reported. Salmonella enterica was recovered from 40 (33%) of 121 sampled herds, and a total of 65 isolates were serotyped. The most common Salmonella serotypes were Typhimurium and Rissen (30.7% each); others included Derby (9.2%), Brandenburg (9.2%), Newport (7.7%), Bredeney (4.6%), Anatum (3.0%), Hadar (1.5%), and Goldcoast (1.5%). One strain (1.5%) belonging to the monophasic variant of the Typhimurium serotype (Salmonella 4,5,12:i:−) was also detected. Definitive phage type (DT) 104b was the most common Typhimurium phage type isolated. These Salmonella strains were resistant to various antimicrobial agents, including tetracycline (84.6%), streptomycin (69.2%), neomycin (63.0%), sulfonamides (61.5%), ampicillin (53.8%), and amoxicillin (53.8%). All isolates were fully susceptible to ceftriaxone, ciprofloxacin, and colistin. Thirty-nine strains (64%) resistant to four or more antimicrobial agents were defined as multidrug resistant. Multidrug resistance profiles were observed in Salmonella serotypes Typhimurium, Rissen, Brandenburg, Bredeney, a monophasic variant, Gold-coast, Hadar, and Anatum, with serotypes Typhimurium and Brandenburg showing the most complicated resistance patterns (resistant to ≥11 drugs).


Food Control ◽  
2021 ◽  
Vol 121 ◽  
pp. 107590
Author(s):  
Federica Giacometti ◽  
Annalisa Pezzi ◽  
Giorgio Galletti ◽  
Marco Tamba ◽  
Giuseppe Merialdi ◽  
...  

2018 ◽  
Vol 16 (2) ◽  
pp. 178-183
Author(s):  
Dhiraj Shrestha ◽  
Pratigya Thapa ◽  
Dinesh Bhandari ◽  
Hiramani Parajuli ◽  
Prakash Chaudhary ◽  
...  

Background: The study was designed to provide account of etiological agents of urinary tract infection in pediatric patients and the antimicrobial resistance pattern plus biofilm producing profile of the isolates.Methods: The prospective study was conducted in Alka Hospital, Nepal with 353 clean catch urine samples from children. It was obtained during July 2014 to January 2015 which were first cultured by semi-quantitative method, followed by antimicrobial susceptibility testing and biofilm production assay on Congo red agar. Multidrug- resistance, extensively drug- resistance and pandrug- resistance among isolates were considered as per international consensus.Results: Out of 353 samples, 64 (18.13%) showed positive growth in culture, confirming urinary tract infection. E. coli, 44 (68.8%) was the predominant organism followed by Klebsiella spp. 6 (14.1%). Most E. coli were sensitive to amikacin (93.2%) followed by nitrofurantoin (86.4%), and highly resistant to ampicillin (95.5%). Of 64 isolates, 23 (35.93%) were found to be multidrug- resistant strains. Biofilm was produced by 36 (56.25%) isolates.Conclusions: This study showed higher biofilm production and resistance to in-use antibiotics rendering ineffective for empirical use. Regular surveillance of resistance patterns should be done to regulate multidrug- resistant bugs and to ensure effective management of urinary tract infection in children in a tertiary care setups.Keywords: AMR; antimicrobial resistance; biofilm; urinary tract infection; UTI.


2010 ◽  
Vol 4 (12) ◽  
pp. 804-809 ◽  
Author(s):  
Farida Ohmani ◽  
Khadija Khedid ◽  
Saad Britel ◽  
Aicha Qasmaoui ◽  
Reda Charof ◽  
...  

Introduction: Salmonella enterica is recognised worldwide as one of the major agents of human gastrointestinal infections. The aim of the present work is to ascertain the antimicrobial susceptibilities of 150 Salmonella enterica serovar Enteritidis isolates from humans in Morocco during the period from 2000 to 2008. Methodology: Antimicrobial resistance determination was performed by disk diffusion method using seven antibiotics. The minimal inhibitory concentration (MIC) of ciprofloxacin was determined for nalidixic acid-resistant (NAR) isolates using E-test strips. Results: Sixty-one (42%) isolates were resistant to at least one class of antimicrobial agent. The largest numbers of resistant isolates were observed for nalidixic acid with 53 isolates (36%) followed by ampicillin with 7 isolates (5%), tetracycline with 6 isolates (4%), and trimethoprim/sulfamethoxazole with 2 isolates (1%).The resistant isolates were grouped in seven different resistance patterns of which two isolates were resistant to three antibiotics. Among the 53 (36%) NAR isolates, 37 (76%) had a reduced susceptibility to ciprofloxacin. Conclusion: Resistance rates of Salmonella enterica serovar Enteritidis from Morocco are generally low but the resistance to nalidixic acid is worryingly common. Continual surveillance of antibiotic resistance is of primary importance.


2011 ◽  
Vol 60 (2) ◽  
pp. 216-222 ◽  
Author(s):  
Erick Amaya ◽  
Daniel Reyes ◽  
Samuel Vilchez ◽  
Margarita Paniagua ◽  
Roland Möllby ◽  
...  

In developing countries, diarrhoeal diseases are one of the major causes of death in children under 5 years of age. It is known that diarrhoeagenic Escherichia coli (DEC) is an important aetiological agent of infantile diarrhoea in Nicaragua. However, there are no recent studies on antimicrobial resistance among intestinal E. coli isolates in Nicaraguan children. The aim of the present study was to determine the antimicrobial resistance pattern in a collection of 727 intestinal E. coli isolates from the faeces of children in León, Nicaragua, between March 2005 and September 2006. All samples had been screened previously for the presence of DEC by multiplex PCR. Three hundred and ninety-five non-DEC isolates (270 from children with diarrhoea and 125 from children without diarrhoea) and 332 DEC isolates (241 from children with diarrhoea and 91 from children without diarrhoea) were analysed in this study. In general, antimicrobial resistance among the 727 intestinal E. coli isolates was high for ampicillin (60 %), trimethoprim–sulfamethoxazole (64 %) and chloramphenicol (11 %). Among individual E. coli categories, enteroaggregative E. coli isolates from children with and without diarrhoea exhibited significantly higher levels of resistance (P<0.05) to ampicillin and trimethoprim–sulfamethoxazole compared to the other E. coli categories. Resistance to ceftazidime and/or ceftriaxone and a pattern of multi-resistance was related to CTX-M-5- or CTX-M-15-producing E. coli isolates. The results suggest that E. coli isolates from Nicaraguan children have not reached the high levels of resistance to the most common antibiotics used for diarrhoea treatment as in other countries.


Sign in / Sign up

Export Citation Format

Share Document