Comparison between electroporation and polyfection in pig sperm: efficiency and cell viability implications

Zygote ◽  
2018 ◽  
Vol 26 (4) ◽  
pp. 286-293 ◽  
Author(s):  
Zigomar da Silva ◽  
Andressa Pereira de Souza ◽  
José Rodrigo Claudio Pandolfi ◽  
Francisco Noé da Fonseca ◽  
Carlos André da Veiga Lima-Rosa ◽  
...  

SummaryThe aim of this study was to optimize protocols for electroporation (EP) and polyfection (PLF) using polyethyleneimine (PEI) for pig sperm transfection and to determine which method was the most efficient. For EP standardization, different voltages, amounts and times of electric pulses were tested using propidium iodide (PI) as reporter. For PLF standardization, different concentrations of fluorescein isothiocyanate (FITC)-labelled PEI (PEI/FITC) were incubated with sperm for different periods of time. Flow cytometry was performed to evaluate the best protocol in terms of cell viability, including cytoplasmic membrane, acrosome, chromatin integrities and mitochondrial potential using the FITC probe, PI, acridine orange (AO) and JC1. Transfections with the plasmid pmhyGENIE-5 were carried out under optimum conditions for each procedure (EP: 500 volts, 500 μs and two pulses; PLF: PEI 0.5 mg/ml and incubation time 10 min). Transfection efficacy was assessed by fluorescence in situ hybridization (FISH). A lower transfection rate was observed for sperm in the control group (17.8%) compared with EP (36.7%), with PLF (76.8%) being the most efficient. These results suggest that the EP and PEI could be an efficient and low cost transfection method for swine sperm. Notably, treated cells showed higher plasmatic the membrane damage (PMD) and/or acrosome damage (AD) indexes, therefore the combination of this procedure with biotechniques that facilitate fecundation (i.e. in vitro fertilization or intracytoplasmic sperm injection) or even inclusion of antioxidant or anti-apoptotic drugs to improve spermatozoa viability would be important.

2015 ◽  
Vol 44 (4) ◽  
pp. 195-199 ◽  
Author(s):  
Priscilla Barbosa Ferreira Soares ◽  
Camilla Christian Gomes Moura ◽  
Huberth Alexandre da Rocha Júnior ◽  
Paula Dechichi ◽  
Darceny Zanetta-Barbosa

<title>Abstract</title><sec><title>Objective</title><p>Evaluate the biological performance of titanium alloys grade IV under different surface treatments: sandblasting and double etching (Experimental surface 1; Exp1, NEODENT); surface with wettability increase (Experimental surface 2; Exp2, NEODENT) on response of preliminary differentiation and cell maturation.</p></sec><sec><title>Material and method</title><p>Immortalized osteoblast cells were plated on Exp1 and Exp2 titanium discs. The polystyrene plate surface without disc was used as control group (C). Cell viability was assessed by measuring mitochondrial activity (MTT) at 4 and 24 h (n = 5), cell attachment was performed using trypan blue exclusion within 4 hours (n = 5), serum total protein and alkaline phosphatase normalization was performed at 4, 7 and 14 days (n = 5). Data were analyzed using one-way ANOVA and Tukey test.</p></sec><sec><title>Result</title><p>The values of cell viability were: 4h: C– 0.32±0.01<sup>A</sup>; Exp1– 0.34±0.08<sup>A</sup>; Exp2– 0.29±0.03<sup>A</sup>. 24h: C– 0.43±0.02<sup>A</sup>; Exp1– 0.39±0.01<sup>A</sup>; Exp2– 0.37±0.03<sup>A</sup>. The cell adhesion counting was: C– 85±10<sup>A</sup>; Exp1- 35±5<sup>B</sup>; Exp2– 20±2<sup>B</sup>. The amounts of serum total protein were 4d: C– 40±2<sup>B</sup>; Exp1– 120±10<sup>A</sup>; Exp2– 130±20<sup>A</sup>. 7d: C– 38±2<sup>B</sup>; Exp1– 75±4<sup>A</sup>; Exp2– 70±6<sup>A</sup>. 14 d: C– 100±3<sup>A</sup>; Exp1– 130±5<sup>A</sup>; Exp2– 137±9<sup>A</sup>. The values of alkaline phosphatase normalization were: 4d: C– 2.0±0.1<sup>C</sup>; Exp1– 5.1±0.8<sup>B</sup>; Exp2– 9.8±2.0<sup>A</sup>. 7d: C– 1.0±0.01<sup>C</sup>; Exp1– 5.3±0.5<sup>A</sup>; Exp2– 3.0±0.3<sup>B</sup>. 14 d: C– 4.1±0.3<sup>A</sup>; Exp1– 4.4±0.8<sup>A</sup>; Exp2– 2.2±0.2<sup>B</sup>. Different letters related to statistical differences.</p></sec><sec><title>Conclusion</title><p>The surfaces tested exhibit different behavior at dosage of alkaline phosphatase normalization showing that the Exp2 is more associated with induction of cell differentiation process and that Exp1 is more related to the mineralization process.</p></sec>


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Jianghao Gong ◽  
Shangjun Fu ◽  
Zhenghao Zhou

Objective. To explore the effects of silicone gel nanoparticles modified with octacalcium phosphate on the surface (silica/OCP) polymer drugs on the proliferation of osteoblasts and autophagy. Method. Silica/OCP was prepared in vitro, and the quality of the sample preparation was tested through characterization experiments. The osteoblast cell line (hFOB1.19) was treated with silica/OCP, autophagy inhibitor (3-methyladenine (3-MA)), and silica/OCP+3-MA, respectively. The proliferation of hFOB1.19 cells was detected through the methylthiazolyldiphenyl-tetrazolium bromide (MTT) kit. Flow cytometry was used to detect the cell apoptosis. The change in protein beclin1 and P62 expression in hFOB1.19 cells was observed in Western blot. An ROS detection kit was used to detect the content of reactive oxygen species in hFOB1.19 cells. Results. Silica/OCP was a sphere with a particle size of 50 nm to 130 nm and had an OCP phase in electron projection microscopy and X-ray diffraction techniques. The results indicated that OCP successfully modified silica and the material was successfully prepared. An MTT kit and flow cytometry test showed that the cell viability of the cells treated with silica/OCP increased significantly ( P < 0.05 ), and the intracellular apoptosis phenomenon was significantly decreased ( P < 0.05 ) compared to the control group. Moreover, the inhibition of cell viability and promotion of apoptosis caused by the autophagy inhibitor 3-MA can be rescued. Western blotting demonstrated that the protein level of beclin1 in osteoblasts reached the highest after six hours of treatment with silica/OCP, and the protein level of p62, the substrate protein of autophagy, reached the lowest. At the same time, treatment of cells with the autophagy inhibitor 3-MA and silica/OCP+3-MA found that the protein levels of beclin1 and p62 in the silica/OCP+3-MA group were adjusted back compared to the 3-MA group. After adding the autophagy inhibitor, the reactive oxygen content in the cell was significantly increased ( P < 0.05 ) in the silica/OCP group. In the presence of intracellular reactive oxygen inhibitors catalase and silica/OCP, the cell viability of osteoblasts was significantly lower than that of the silica/OCP group but significantly higher than that of the silica/OCP+3-MA group. The apoptosis level of the silica/OCP+catalase group was also significantly lower than that of the silica/OCP+3-MA group ( P < 0.05 ) but was significantly higher than that of the silica/OCP group ( P < 0.05 ). Conclusion. Silica/OCP nanoparticles can upregulate the level of autophagy in osteoblasts and promote the proliferation of osteoblasts.


2006 ◽  
Vol 18 (2) ◽  
pp. 250
Author(s):  
M. G. Marques ◽  
A. B. Nascimento ◽  
V. P. Oliveira ◽  
A. R. S. Coutinho ◽  
M. E. O. A. Assumpção ◽  
...  

The present work evaluated the reversible meiosis inhibition effect on the development of swine embryos produced by in vitro fertilization (IVF) or parthenogenetic activation (PA). The efficiency of PZM3 and NCSU23 embryo culture media was also evaluated. Oocytes from ovaries collected at a slaughterhouse were subjected to IVM in two different groups: CHX (cycloheximide 5 µM for 10 h) and control, both with TCM-199 + 3.05 mM glucose + 0.91 mM sodium pyruvate + 10% porcine follicular fluid (pFF) + 0.57 mM cystein + 10 ng epidermal growth factor (EGF)/mL + 10 IU eCG/mL + 10 IU hCG/mL for the initial 22 h. In the remaining period (20 h for CHX and 22 h for control), medium without hormones was utilized. After IVM, oocytes were denuded and fertilized for 6 h (IFV) or the matured oocytes were submitted to activation by electric pulses (PA) (2 DC of 1.5 kV/cm for 30 µs), incubated for 1 h in culture medium with 10 μM of CHX, and again submitted to the same electric pulses for 60 µs. Embryo development was evaluated by cleavage rate on Day 3 and blastocyst rate and blastocyst cell number on Day 7 of culture. Cleavage and blastocyst rates were analyzed by the equality-of-two-ratios test and cell number by the Kruskal-Wallis and Mann-Whitney tests (P < 0.05). In relation to IVF, the PZM3 medium was more efficient than NCSU23 for cleavage rate in the CHX group (PZM3: 68.4%, NCSU23: 44.4%) and had a better blastocyst rate in the control group (PZM3: 13.4%, NCSU23: 5.6%). With reference to PA, NCSU23 presented better cleavage and blastocyst rates than PZM3 in the CHX group (NCSU23: 89.5%, PZM3: 78.5% and NCSU23: 20.4%, PZM3: 13.0%, respectively). In the control group, only the NCSU23 blastocyst rate was higher than that for PZM3 (NCSU23: 22.5%, PZM3: 10.8%). No culture medium effect on cell number mean of IVF and PA blastocysts was observed. Maturation block improved cleavage rates in IVF groups cultured with PZM3 (68.4% and 50.6%, respectively, for CHX and control) and in PA groups cultured with NCSU23 (89.5% and 80.3%, respectively, for CHX and control), but no improvement of blastocyst rates in both groups (IVF and PA) was verified. Table 1 below shows that maturation block decreased the IVF and increased the PA blastocyst cell numbers. As older oocytes are more effectively activated, oocytes blocked with CHX achieved the maturation stage faster than the control group, therefore resulting in high-quality PA blastocysts. In conclusion, PZM3 was more efficient for IVF embryo production in contrast to NCSU23, whereas NCSU23 can be indicated for PA embryo production. Moreover, maturation blockage with CHX influenced blastocyst cell number, decreasing in IVF embryos and increasing in PA embryos. Table 1. Mean (±SD) of blastocyst cell numbers for IVF or PA groups after in vitro maturation without (control) or with cycloheximide (CHX) and cultured in NCSU23 or PZM3 medium This work was supported by FAPESP 02/10747–1.


2010 ◽  
Vol 22 (1) ◽  
pp. 322
Author(s):  
D. D. Bücher ◽  
M. A. Castro ◽  
M. E. Silva ◽  
M. A. Berland ◽  
I. I. Concha ◽  
...  

Granulocyte-macrophage colony stimulating factor (GM-CSF) is a pleiotropic cytokine that stimulates proliferation, differentiation and function in different cells types. We have previously demonstrated (Bücher DD et al. 2008 Reprod. Dom. Anim. 43 (Suppl. 3), 146 abst.) that both subunits of GM-CSF receptor are expressed in granulosa cells from antral follicles in bovine ovaries. Also, we determined that the cytokine enhances glucose uptake through facilitative hexose transporters in granulosa cells in primary culture. The goals of the present study were to characterize the expression of GM-CSF receptor in cumulus cells and oocytes from bovine antral follicles and to determine its effects on in vitro-matured bovine COCs in a chemically defined medium. To determine the presence of a and |5 subunits of GM-CSF receptor, COCs were aspirated from follicles <8 mm in diameter, fixed, and submitted to immunocytochemistry. To study the effect of GM-CSF on in vitro maturation of oocytes, COCs (n =481) were cultured using serum-free medium (SOF) containing 0, 1, 10, and 100 ng mL-1 of human recombinant GM-CSF (R&D Systems, Inc., Minneapolis, MN, USA) for 22 h at 39°C, 5% CO2 in humidified air. Nuclear stage, cumulus expansion, cumulus cell number, and viability were analyzed after in vitro maturation. Cumulus expansion was assessed using the cumulus expansion index (CEI) (Fagbohun C and Down S 1990 Biol. Reprod. 42, 413-423). Nuclear stage was evaluated using aceto-orcein stain. To determine cumulus cell viability and number, COCs (n = 10-12 per group) were transferred into an Eppendorf tube and cumulus cells were removed by vortexing for 3 min, stained with trypan blue and counted with a hemocytometer. The study was conducted in 6 replicates. Data from cumulus expansion and cell number were analyzed by Kruskal-Wallis analysis. Data for nuclear stage and cell viability were analyzed by chi-square analysis and one way ANOVA, respectively. Both receptor subunits were present in cumulus cells and oocytes from COCs. COCs cultured in 10 and 100 ng mL-1 GM-CSF had CEI scores (0.8 and 1.22, respectively) greater (P < 0.01) than controls (0.2), but the proportion of COCs displaying second metaphase did not differ (P = 0.5) among treatment groups. GM-CSF at a concentration of 100 ng mL-1 increased (P < 0.01) cumulus cell viability by more than 20% compared to the control group. Similarly, GM-CSF at concentrations of 10 and 100 ng mL-1 increased (P < 0.05) cumulus cell number by more than 20% and 45%, respectively, from the control group. The use of a specific inhibitor of PI3 kinase (Ly294002; 10 and 100 μM) blocked the stimulatory effect of GM-CSF on cumulus expansion, cell viability, and cell number. In conclusion, the results of the study suggest a plausible modulator role of GM-CSF in the metabolism and function of cumulus cells and oocytes during in vitro maturation. Funding from Faculty of Veterinary Sciences, Universidad Austral de Chile, MECESUP AUS-0005, AUS-0601, and DID D-2006-24 and from Universidad Católica de Temuco, research grant 2007 DGI-CDA-04.


Vascular ◽  
2019 ◽  
Vol 28 (3) ◽  
pp. 314-320
Author(s):  
Weiping Ci ◽  
Tian Wang ◽  
Taotao Li ◽  
Jin Wan

Objectives The effect and underlying mechanism of T-614 (iguratimod) on Takayasu’s arteritis (TA) are unknown. Here, we report the effects of T-614 on cell proliferation and interleukin-8 (IL-8) production in human aortic adventitial fibroblasts (HAAFs) in vitro and explore its initial benefit in terms of vascular wall inflammation and remodeling for patients with TA. Methods HAAFs were cultured with 0, 5, 50, 100, or 250 μg/ml T-614 in the absence or presence of tumor necrosis factor-α (TNF-α) in vitro. Cell viability was determined by a modified MTT assay. Supernatant IL-8 levels were measured by enzyme-linked immunosorbent assays. Results In the presence of TNF-α, compared to that in the control group, cell viability of HAAFs significantly decreased in the 50, 100, and 250 μg/ml T-614 treatment groups (OD value: P <  0.01, P <  0.001, P <  0.001, respectively; survival fraction (SF): P <  0.05, P <  0.001, P <  0.001, respectively). However, there was no significant difference in cell viability between TNF-α-stimulated and unstimulated groups at the same concentration of T-614. In the absence or presence of TNF-α, T-614 suppressed HAAF cell viability dose-dependently (OD value: r = −0.915, P =  0.000; r = −0.926, P =  0.000, respectively; SF: r = −0.897, P =  0.000; r = −0.885, P =  0.000, respectively). Compared to that in the control group, in the absence of TNF-α, IL-8 levels in the 5 and 100 μg/ml T-614-treated groups were significantly higher ( P <  0.05); in the presence of TNF-α, IL-8 levels in the 5, 50, and 100 μg/ml T-614-treated groups were significantly higher ( P <  0.001, P <  0.001, P <  0.01, respectively). Further, there was a negative correlation between supernatant IL-8 levels and T-614 concentration in groups stimulated with TNF-α ( r = −0.670, P =  0.000), but there was no significant correlation between these parameters in groups that were not stimulated with TNF-α. Conclusions In the absence or presence of TNF-α, T-614 can inhibit HAAF proliferation and promote IL-8 production in vitro; therefore, it could be used to prevent adventitial thickening of the aorta and improve vascular remodeling in inflammatory environments in vitro and might provide a new immunotherapeutic intervention for TA.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Tatiane Oliveira ◽  
Camila A. Figueiredo ◽  
Carlos Brito ◽  
Alexander Stavroullakis ◽  
Anuradha Prakki ◽  
...  

Allium cepaL. is known to possess numerous pharmacological properties. Our aim was to examine thein vitroeffects ofAllium cepaL. extract (AcE) onPorphyromonas gingivalisLPS andEscherichia coliLPS-stimulated osteoclast precursor cells to determine cell viability to other future cell-based assays. Osteoclast precursor cells (RAW 264.7) were stimulated byPgLPS (1 μg/mL) andE. coliLPS (1 μg/mL) in the presence or absence of different concentrations of AcE (10–1000 μg/mL) for 5 days at 37°C/5% CO2. Resazurin reduction and total protein content assays were used to detect cell viability. AcE did not affect cell viability. Resazurin reduction assay showed that AcE, at up to 1000 μg/mL, did not significantly affect cell viability and cellular protein levels. Additionally a caspase 3/7 luminescence assay was used to disclose apoptosis and there was no difference in apoptotic activity between tested groups and control group. Fluorescence images stained by DAPI showed no alteration on the morphology and cell counts of LPS-stimulated osteoclast precursor cells with the use of AcE in all tested concentrations when compared to control. These findings suggest thatAllium cepaL. extract could be used forin vitrostudies onPorphyromonas gingivalisLPS andEscherichia coliLPS-stimulated osteoclast precursor cells.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Elke M. F. Lemos ◽  
Sandhra M. Carvalho ◽  
Patrícia S. O. Patrício ◽  
Claudio L. Donnici ◽  
Marivalda M. Pereira

Recent studies in tissue engineering have highlighted the importance of the development of composite materials based on biodegradable polymers containing bioactive glasses, in particular, composites for high load support and excellent cell viability for potential application in bone regeneration. In this work, hybrid composite films were obtained by combining chitosan with bioactive glass in solution form and in nanoparticle dispersion form obtained by the two different synthesis routes: the sol-gel method and coprecipitation. The bioactive glass served both as a mechanical reinforcing agent and as a triggering agent with high bioactivity. The results ofin vitroassays with simulated body fluid demonstrated the formation of a significant layer of fibrils on the surface of the film, with a typical morphology of carbonated hydroxyapatite, reflecting induction of a favorable bioactivity. Maximum tensile stress increased from 42 to 80 MPa to the sample with 5% wt bioactive glass. In addition, samples containing 5% and 10% wt bioactive glass showed a significant increase in cell viability, 18 and 30% increase compared to the control group. The samples showed significant response, indicating that they could be a potential material for use in bone regeneration through tissue engineering.


2014 ◽  
Vol 631 ◽  
pp. 357-362 ◽  
Author(s):  
Emanuelle Stellet Lourenço ◽  
Juliana Côrtes ◽  
Joyce Costa ◽  
Adriana Linhares ◽  
Gutemberg Alves

Several tests for the biological evaluation of bioceramic materials and medical devices are provided in specific international standards, where in vitro tests have a major role. Tests involving exposure of cells in culture require the use of validated positive controls, which, in the same preparation and treatment conditions, present a substantial and well-known cytotoxicity. The present work aimed to test and validate 3 different sources of low cost, commercially available latex, as positive controls in cytotoxicity tests for bioceramic materials performed by indirect exposure. The tested origins for latex samples were: surgical gloves without powder, 100% pure amber latex hospital-grade tourniquets and 60 % latex White tubing. MC3T3-E1 murine pre-osteoblasts in culture were exposed to conditioned media (extracts) of each material tested, along with sintered stoichiometric hydroxyapatite bioceramics, and polystyrene beads as negative control. Cell viability was determined by XTT and Crystal Violet Exclusion tests. Concentration curves of the extracts were performed to obtain the DC50. Only the 100% pure amber latex tubing was proven to be cytotoxic, with cell survival less than 5%. This material did not affected neighboring groups at the same experimental system. Moreover, latex samples showed great repeatability in different tests against latex and biomaterials, with consistent toxicity under 20% cell survival as shown in 3 different cell viability parameters. We conclude that fragments of latex ambar tubing are suited as effective positive controls in tests of medical bioceramic materials.


2021 ◽  
Vol 22 (18) ◽  
pp. 9986
Author(s):  
Giulia Brunello ◽  
Kathrin Becker ◽  
Luisa Scotti ◽  
Dieter Drescher ◽  
Jürgen Becker ◽  
...  

Several decontamination methods for removing biofilm from implant surfaces during surgical peri-implantitis treatment have been reported, including the intraoperative usage of chlorhexidine (CHX)-based antiseptics. There is a lack of information on possible adverse effects on bone healing. The study aimed to examine the impact of three CHX-based mouthwashes on osteoblast-like cells (SaOS-2) in vitro. Cells were cultured for three days in 96-well binding plates. Each well was randomly treated for either 30, 60 or 120 s with 0.05% CHX combined with 0.05% cetylpyridinium chloride (CPC), 0.1% CHX, 0.2% CHX or sterile saline (NaCl) as control. Cell viability, cytotoxicity and apoptosis were assessed at day 0, 3 and 6. Cell viability resulted in being higher in the control group at all time points. At day 0, the CHX 0.2 group showed significantly higher cytotoxicity values compared to CHX 0.1 (30 s), CHX + CPC (30 s, 60 s and 120 s) and control (60 s and 120 s), while no significant differences were identified between CHX + CPC and both CHX 0.1 and NaCl groups. All test mouthwashes were found to induce apoptosis to a lower extent compared to control. Results indicate that 0.2% CHX presented the highest cytotoxic effect. Therefore, its intraoperative use should be carefully considered.


2016 ◽  
Vol 17 (6) ◽  
pp. 457-462 ◽  
Author(s):  
Isleine P Caldas ◽  
Miriam Z Scelza ◽  
Marco A Gallito ◽  
Gutemberg Alves ◽  
Licínio Silva

ABSTRACT Aims The aim of this study is to evaluate the in vitro response of human gingival fibroblasts in primary cultures to two materials for temporary relining of dentures: Temporary Soft (TDV, Brazil) and Trusoft (Bosworth, USA) for 24 hours, 7 and 30 days by using a multi-parametric analysis. Materials and methods Each material sample (TDV, TS, Polystyrene, Latex) was prepared and incubated in a culture medium for 1, 7, and 30 days at 37°C. Human gingival fibroblasts were exposed to the extracts and cell viability was evaluated by a multi-parametric assay, which allowed sequential analysis of mitochondrial activity (XTT), membrane integrity [neutral red (NR)], and cell density [crystal violet dye exclusion (CVDE)] in the same cells. Analysis of variance (ANOVA) was used to test the interactions of the three sources of variation (material, test method, and time) with the proportions of viable cells for each relining material. Results Both evaluated materials (TDV and TS) had low cytotoxic effects during 1, 7, and 30 days after manipulation of the material, as assessed by all three methods used. A statistical difference was found when comparing the negative control group (latex fragments) with the other groups, which showed high toxicity and low percentage of cell viability in all tests used. There was no significant difference among other materials (p > 0.05). Conclusion Low cytotoxicity levels were detected by representatives of the major groups of temporary prosthetic relining materials, as evaluated by multiple cellular viability parameters in human fibroblasts. Clinical significance There are various soft materials on the market for relining prostheses; however, the effects of these materials on tissues need to be clarified to avoid problems for patients. How to cite this article Caldas IP, Scelza MZ, Gallito MA, Alves G, Silva L. In vitro Analysis of Cytotoxicity of Temporary Resilient Relining Materials. J Contemp Dent Pract 2016;17(6):457-462.


Sign in / Sign up

Export Citation Format

Share Document