Climate, crops, and forests: a pan-tropical analysis of household income generation

2018 ◽  
Vol 23 (3) ◽  
pp. 279-297 ◽  
Author(s):  
Sven Wunder ◽  
Frederik Noack ◽  
Arild Angelsen

AbstractRural households in developing countries depend on crops, forest extraction and other income sources for their livelihoods, but these livelihood contributions are sensitive to climate change. Combining socioeconomic data from about 8,000 smallholder households across the tropics with gridded precipitation and temperature data, we find that households have the highest crop income at 21°C temperature and 2,000 mm precipitation. Forest incomes increase on both sides of this agricultural maximum. We further find indications that crop income declines in response to weather shocks while forest income increases, suggesting that households may cope by reallocating inputs from agriculture to forests. Forest production may thus be less sensitive than crop production to climatic fluctuations, gaining comparative advantage in extreme climates and under weather anomalies. This suggests that well-managed forests might help poor rural households to cope with and adapt to future climate change.

Author(s):  
Geoffrey Sabiiti ◽  
Joseph Mwalichi Ininda ◽  
Laban Ayieko Ogallo ◽  
Jully Ouma ◽  
Guleid Artan ◽  
...  

2020 ◽  
Author(s):  
Miao Qi ◽  
Xiaodi Liu ◽  
Yibo Li ◽  
He Song ◽  
Feng Zhang ◽  
...  

AbstractAbnormally altered precipitation patterns induced by climate change have profound global effects on crop production. However, the plant functional responses to various precipitation regimes remain unclear. Here, greenhouse and field experiments were conducted to determine how maize plant functional traits respond to drought, flooding, and rewatering. Drought and flooding hampered photosynthetic capacity, particularly when severe and/or prolonged. Most photosynthetic traits recovered after rewatering, with few compensatory responses. Rewatering often elicited high photosynthetic resilience in plants exposed to severe drought at the end of plant development, with the response strongly depending on the drought severity/duration and plant growth stage. The associations of chlorophyll concentrations with photosynthetically functional activities were stronger during post-tasselling than pre-tasselling, implying an involvement of leaf age/senescence in responses to episodic drought and subsequent rewatering. Coordinated changes in chlorophyll content, gas exchange, fluorescence parameters (PSII quantum efficiency and photochemical/non-photochemical radiative energy dissipation) possibly contributed to the enhanced drought resistance and resilience and suggested a possible regulative trade-off. These findings provide fundamental insights into how plants regulate their functional traits to deal with sporadic alterations in precipitation. Breeding and management of plants with high resistance and resilience traits could help crop production under future climate change.


2016 ◽  
Vol 3 (9) ◽  
pp. 160197 ◽  
Author(s):  
Chérie E. Part ◽  
Phil Edwards ◽  
Shakoor Hajat ◽  
Lisa M. Collins

Climate change impact assessment and adaptation research in agriculture has focused primarily on crop production, with less known about the potential impacts on livestock. We investigated how the prevalence of health and welfare conditions in broiler (meat) chickens changes with weather (temperature, rainfall, air frost) in a temperate climate. Cases of 16 conditions were recorded at approved slaughterhouses in Great Britain. National prevalence rates and distribution mapping were based on data from more than 2.4 billion individuals, collected between January 2011 and December 2013. Analysis of temporal distribution and associations with national weather were based on monthly data from more than 6.8 billion individuals, collected between January 2003 and December 2013. Ascites, bruising/fractures, hepatitis and abnormal colour/fever were most common, at annual average rates of 29.95, 28.00, 23.76 and 22.29 per 10 000, respectively. Ascites and abnormal colour/fever demonstrated clear annual cycles, with higher rates in winter than in summer. Ascites prevalence correlated strongly with maximum temperature at 0 and −1 month lags. Abnormal colour/fever correlated strongly with temperature at 0 lag. Maximum temperatures of approximately 8°C and approximately 19°C marked the turning points of curve in a U-shaped relationship with mortality during transportation and lairage. Future climate change research on broilers should focus on preslaughter mortality.


2010 ◽  
Vol 148 (6) ◽  
pp. 639-656 ◽  
Author(s):  
M. TRNKA ◽  
J. EITZINGER ◽  
M. DUBROVSKÝ ◽  
D. SEMERÁDOVÁ ◽  
P. ŠTĚPÁNEK ◽  
...  

SUMMARYThe reality of climate change has rarely been questioned in Europe in the last few years as a consensus has emerged amongst a wide range of national to local environmental and resource policy makers and stakeholders that climate change has been sufficiently demonstrated in a number of sectors. A number of site-based studies evaluating change of attainable yields of various crops have been conducted in Central Europe, but studies that evaluate agroclimatic potential across more countries in the region are rare. Therefore, the main aim of the present study was to develop and test a technique for a comprehensive evaluation of agroclimatic conditions under expected climate conditions over all of Central Europe with a high spatial resolution in order to answer the question posed in the title of the paper ‘Is rainfed crop production in central Europe at risk?’ The domain covers the entire area of Central Europe between latitudes 45° and 51·5°N and longitudes 8° and 27°E, including at least part of the territories of Austria, the Czech Republic, Germany, Hungary, Poland, Romania, Slovakia, Switzerland and Ukraine. The study is based on a range of agroclimatic indices that are designed to capture complex relations existing between climate and crops (their development and/or production) as well as the agrosystems as a whole. They provide information about various aspects of crop production, but they are not meant to compete with other and sometimes more suitable tools (e.g. process-based crop models, soil workability models, etc.). Instead, the selected indices can be seen as complementary to crop modelling tools that describe aspects not fully addressed or covered by crop models for an overall assessment of crop production conditions. The set of indices includes: sum of effective global radiation, number of effective growing days, Huglin index, water balance during the period from April to June (AMJ) and during the summer (JJA), proportion of days suitable for harvesting of field crops in June and July, and proportion of days suitable for sowing in early spring as well as during the autumn. The study concluded that while the uncertainties about future climate change impacts remain, the increase in the mean production potential of the domain as a whole (expressed in terms of effective global radiation and number of effective growing days) is likely a result of climate change, while inter-annual yield variability and risk may also increase. However, this is not true for the Pannonian (the lowlands between the Alps, the Carpathian Mountains and the Dinaric Alps) and Mediterranean parts of the domain, where increases in the water deficit will further limit rainfed agriculture but will probably lead to an increase in irrigation agriculture if local water resources are dwindling. Increases in the severity of the 20-year drought deficit and more substantial water deficits during the critical part of the growing season are very likely over the central and western part of the domain. Similarly, the inter-annual variability of water balance is likely to increase over the domain. There is also a chance of conditions for sowing during spring deteriorating due to unfavourable weather, which might increase the preference given to winter crops. This is already likely due to their ability to withstand spring drought stress events. Harvesting conditions in June (when harvest of some crops might take place in the future) are not improving beyond the present level, making the planning of the effective harvest time more challenging. Based on the evidence provided by the present study, it could be concluded that rainfed agriculture might indeed face more climate-related risks, but the overall conditions will probably allow for acceptable yield levels in most seasons. However, the evidence also suggests that the risk of extremely unfavourable years, resulting in poor economic returns, is likely to increase.


Water SA ◽  
2019 ◽  
Vol 45 (3 July) ◽  
Author(s):  
Simbarashe Govere ◽  
Justice Nyamangara ◽  
Emerson Z Nyakatawa

Reductions in the water footprint (WF) of crop production, that is, increasing crop water productivity (CWP), is touted as a universal panacea to meet future food demands in the context of global water scarcity. However, efforts to reduce the WF of crop production may be curtailed by the effects of climate change. This study reviewed the impacts of climate change on the WF of wheat production in Zimbabwe with the aim of identifying research gaps. Results of the review revealed limited local studies on the impacts of climate change on the WF of wheat production within Zimbabwe. Despite this, relevant global and regional studies suggest that climate change will likely result in a higher WF in Zimbabwe as well as at the global and regional level. These impacts will be due to reductions in wheat yields and increases in crop water requirements due to high temperatures, despite the CO2 fertilization effect. The implications of a higher WF of wheat production under future climate change scenarios in Zimbabwe may not be sustainable given the semi-arid status of the country. The study reviewed crop-level climate change adaptation strategies that might be implemented to lower the WF of wheat production in Zimbabwe.


2014 ◽  
Vol 05 (04) ◽  
pp. 1450010 ◽  
Author(s):  
TRAVIS J. LYBBERT ◽  
AARON SMITH ◽  
DANIEL A. SUMNER

Climate models predict more weather extremes in the coming decades. Weather shocks can directly reduce crop production, but their effect on food markets is partly buffered by storage and supply responses that can be complex and nuanced. We explore how inter-hemispheric trade and supply responses can moderate the effects of weather shocks on global food supply by enabling potential intra-annual arbitrage. Our estimates of this effect in the case of wheat and soybeans suggest that it may be considerable: 25–50% of crop production lost to a shock in the Southern Hemisphere is offset six months later by increased production in the North. These results have implications for the potential effects of climate change on global food markets, for how we model these interactions and, possibly, for the design of trade and production-related policies that aim to leverage this inter-hemispheric buffer more effectively.


2019 ◽  
Author(s):  
Tokuta Yokohata ◽  
Tsuguki Kinoshita ◽  
Gen Sakurai ◽  
Yadu Pokhrel ◽  
Akihiko Ito ◽  
...  

Abstract. Future changes in the climate system could have significant impacts on the natural environment and human activities, which in turn affect changes in the climate system. In the interaction between natural and human systems under climate change conditions, land use is one of the elements that play an essential role. Future climate change will affect the availability of water and food, which may impact land-use change. On the other hand, human land-use change can affect the climate system through bio-geophysical and bio-geochemical effects. To investigate these interrelationships, we developed MIROC-INTEG1 (MIROC INTEGrated terrestrial model version 1), an integrated model that combines the global climate model MIROC (Model for Interdisciplinary Research on Climate) with water resources, crop production, land ecosystem, and land use models. In this paper, we introduce the details and interconnections of the sub-models of MIROC-INTEG1, compare historical simulations with observations, and identify the various interactions between sub-models. MIROC-INTEG1 makes it possible to quantitatively evaluate the feedback processes or nexus between climate, water resources, crop production, land use, and ecosystem, and to assess the risks, trade-offs and co-benefits associated with future climate change and prospective mitigation and adaptation policies.


2021 ◽  
Author(s):  
Sisay Belay Bedeke

Abstract Background: Climate change is one of the major environmental challenge particularly affecting crop producers who depend on climate sensitive rainfed system. The contextual nature of farmers’ adaptation and coping strategies to climate change continues to arouse the interest of several researchers. This study contributed to this growing area of research by examining factors and processes explaining the choice of crop producers’ adaptation to dynamic climate change risks. Method and material: Data were collected through household survey and interview. Multistage sampling was employed for selecting 340 household heads for interview. Descriptive statistics and multinomial logistic models were employed to analysis data collected. Result and discussion: Results indicate that despite perceived increase in current and future climate change risks, farmers are testing and implementing a range of strategies by adjusting sowing date, using late or early maturing varieties, diversifying crop production using legumes and migrating to nearby cities in search of additional jobs as an income source during dry seasons. Contexts-specific factors significantly influencing the choice of adaptation strategies include gender of the household, access to extension services, level of awareness and perceptions, timely access to climate and weather information and size of landholding per household. Conclusion: Based on the results of the study, it was concluded that the choice of adaptation to climate change is driven by much detailed socio-economic and institutional factors in addition to dynamic climatic factors. The study recommended that continuous financial, policy and technical support in terms of research, extension, innovation and awareness creation on improving behavioural and socio-economic aspects that influence adaptation choice should be provided.


Author(s):  
F. Mwesigye

Abstract Following an overview of agricultural sector performance, climate change, and variability in Uganda, this chapter presents a study examining the food security effects of weather shocks by gender in the country. The results show that the incidence of food insecurity increases with an increase in all measures of weather shocks (drought, floods, and irregular rains). In addition, the findings reveal that female-headed households are more vulnerable to climate change than male-headed households and hence are most likely to suffer from food insecurity. The results also show that refugees and rural households are more prone to food insecurity than national- and urban-based households.


Sign in / Sign up

Export Citation Format

Share Document