scholarly journals Prevalence rates of health and welfare conditions in broiler chickens change with weather in a temperate climate

2016 ◽  
Vol 3 (9) ◽  
pp. 160197 ◽  
Author(s):  
Chérie E. Part ◽  
Phil Edwards ◽  
Shakoor Hajat ◽  
Lisa M. Collins

Climate change impact assessment and adaptation research in agriculture has focused primarily on crop production, with less known about the potential impacts on livestock. We investigated how the prevalence of health and welfare conditions in broiler (meat) chickens changes with weather (temperature, rainfall, air frost) in a temperate climate. Cases of 16 conditions were recorded at approved slaughterhouses in Great Britain. National prevalence rates and distribution mapping were based on data from more than 2.4 billion individuals, collected between January 2011 and December 2013. Analysis of temporal distribution and associations with national weather were based on monthly data from more than 6.8 billion individuals, collected between January 2003 and December 2013. Ascites, bruising/fractures, hepatitis and abnormal colour/fever were most common, at annual average rates of 29.95, 28.00, 23.76 and 22.29 per 10 000, respectively. Ascites and abnormal colour/fever demonstrated clear annual cycles, with higher rates in winter than in summer. Ascites prevalence correlated strongly with maximum temperature at 0 and −1 month lags. Abnormal colour/fever correlated strongly with temperature at 0 lag. Maximum temperatures of approximately 8°C and approximately 19°C marked the turning points of curve in a U-shaped relationship with mortality during transportation and lairage. Future climate change research on broilers should focus on preslaughter mortality.

Author(s):  
Roshan Kumar Mehta ◽  
Shree Chandra Shah

The increase in the concentration of greenhouse gases (GHGs) in the atmosphere is widely believed to be causing climate change. It affects agriculture, forestry, human health, biodiversity, and snow cover and aquatic life. Changes in climatic factors like temperature, solar radiation and precipitation have potential to influence agrobiodiversity and its production. An average of 0.04°C/ year and 0.82 mm/year rise in annual average maximum temperature and precipitation respectively from 1975 to 2006 has been recorded in Nepal. Frequent droughts, rise in temperature, shortening of the monsoon season with high intensity rainfall, severe floods, landslides and mixed effects on agricultural biodiversity have been experienced in Nepal due to climatic changes. A survey done in the Chitwan District reveals that lowering of the groundwater table decreases production and that farmers are attracted to grow less water consuming crops during water scarce season. The groundwater table in the study area has lowered nearly one meter from that of 15 years ago as experienced by the farmers. Traditional varieties of rice have been replaced in the last 10 years by modern varieties, and by agricultural crops which demand more water for cultivation. The application of groundwater for irrigation has increased the cost of production and caused severe negative impacts on marginal crop production and agro-biodiversity. It is timely that suitable adaptive measures are identified in order to make Nepalese agriculture more resistant to the adverse impacts of climate change, especially those caused by erratic weather patterns such as the ones experienced recently.DOI: http://dx.doi.org/10.3126/hn.v11i1.7206 Hydro Nepal Special Issue: Conference Proceedings 2012 pp.59-63


Polar Record ◽  
2009 ◽  
Vol 46 (2) ◽  
pp. 157-177 ◽  
Author(s):  
Tristan Pearce ◽  
Barry Smit ◽  
Frank Duerden ◽  
James D. Ford ◽  
Annie Goose ◽  
...  

ABSTRACTClimate change is already being experienced in the Arctic with implications for ecosystems and the communities that depend on them. This paper argues that an assessment of community vulnerability to climate change requires knowledge of past experience with climate conditions, responses to climatic variations, future climate change projections, and non-climate factors that influence people's susceptibility and adaptive capacity. The paper documents and describes exposure sensitivities to climate change experienced in the community of Ulukhaktok, Northwest Territories and the adaptive strategies employed. It is based on collaborative research involving semi-structured interviews, secondary sources of information, and participant observations. In the context of subsistence hunting, changes in temperature, seasonal patterns (for example timing and nature of the spring melt), sea ice and wind dynamics, and weather variability have affected the health and availability of some species of wildlife important for subsistence and have exacerbated risks associated with hunting and travel. Inuit in Ulukhaktok are coping with these changes by taking extra precautions when travelling, shifting modes of transportation, travel routes and hunting areas to deal with changing trail conditions, switching species harvested, and supplementing their diet with store bought foods. Limited access to capital resources, changing levels of traditional knowledge and land skills, and substance abuse were identified as key constraints to adaptation. The research demonstrates the need to consider the perspectives and experiences of local people for climate change research to have practical relevance to Arctic communities such as for the development and promotion of adaptive strategies.


2018 ◽  
Vol 50 (1) ◽  
pp. 24-42 ◽  
Author(s):  
Lei Chen ◽  
Jianxia Chang ◽  
Yimin Wang ◽  
Yuelu Zhu

Abstract An accurate grasp of the influence of precipitation and temperature changes on the variation in both the magnitude and temporal patterns of runoff is crucial to the prevention of floods and droughts. However, there is a general lack of understanding of the ways in which runoff sensitivities to precipitation and temperature changes are associated with the CMIP5 scenarios. This paper investigates the hydrological response to future climate change under CMIP5 RCP scenarios by using the Variable Infiltration Capacity (VIC) model and then quantitatively assesses runoff sensitivities to precipitation and temperature changes under different scenarios by using a set of simulations with the control variable method. The source region of the Yellow River (SRYR) is an ideal area to study this problem. The results demonstrated that the precipitation effect was the dominant element influencing runoff change (the degree of influence approaching 23%), followed by maximum temperature (approaching 12%). The weakest element was minimum temperature (approaching 3%), despite the fact that the increases in minimum temperature were higher than the increases in maximum temperature. The results also indicated that the degree of runoff sensitivity to precipitation and temperature changes was subject to changing external climatic conditions.


Author(s):  
Geoffrey Sabiiti ◽  
Joseph Mwalichi Ininda ◽  
Laban Ayieko Ogallo ◽  
Jully Ouma ◽  
Guleid Artan ◽  
...  

2020 ◽  
Author(s):  
Miao Qi ◽  
Xiaodi Liu ◽  
Yibo Li ◽  
He Song ◽  
Feng Zhang ◽  
...  

AbstractAbnormally altered precipitation patterns induced by climate change have profound global effects on crop production. However, the plant functional responses to various precipitation regimes remain unclear. Here, greenhouse and field experiments were conducted to determine how maize plant functional traits respond to drought, flooding, and rewatering. Drought and flooding hampered photosynthetic capacity, particularly when severe and/or prolonged. Most photosynthetic traits recovered after rewatering, with few compensatory responses. Rewatering often elicited high photosynthetic resilience in plants exposed to severe drought at the end of plant development, with the response strongly depending on the drought severity/duration and plant growth stage. The associations of chlorophyll concentrations with photosynthetically functional activities were stronger during post-tasselling than pre-tasselling, implying an involvement of leaf age/senescence in responses to episodic drought and subsequent rewatering. Coordinated changes in chlorophyll content, gas exchange, fluorescence parameters (PSII quantum efficiency and photochemical/non-photochemical radiative energy dissipation) possibly contributed to the enhanced drought resistance and resilience and suggested a possible regulative trade-off. These findings provide fundamental insights into how plants regulate their functional traits to deal with sporadic alterations in precipitation. Breeding and management of plants with high resistance and resilience traits could help crop production under future climate change.


Author(s):  
V. Guhan ◽  
V. Geethalakshmi ◽  
R. Jagannathan ◽  
S. Panneerselvam ◽  
K. Bhuvaneswari

<p><strong>Abstract.</strong> Climate change induced extreme weather events such as drought and flood condition are likely to become more common and associated impacts on crop production will be more without proper irrigation planning. The present investigation was undertaken for assessing the impact of Climate change on tomato yield and water use efficiency (WUE) using AquaCrop model and RegCM 4.4 simulations. The water driven AquaCrop model was validated based on observation of field experiment conducted with four different dates of sowing (1st November, 15th November, 1st December, 15th December) at Ponnaniyar basin, Tiruchirappalli. Validation of AquaCrop model indicated the capability of AquaCrop in predicting tomato yield, biomass and WUE close to the observed data. Seasonal maximum and minimum temperatures over Tiruchirappalli are projected to increase in the mid-century under both RCP4.5 and RCP8.5 scenarios. Maximum temperature is expected to increase up to 1.7&amp;thinsp;&amp;deg;C/2.5&amp;thinsp;&amp;deg;C in SWM and 1.9&amp;thinsp;&amp;deg;C/2.9&amp;thinsp;&amp;deg;C in NEM by the mid of century as projected through stabilization (RCP 4.5) and overshoot emission (RCP 8.5) pathways. Minimum temperature is expected to increase up to 1.6&amp;thinsp;&amp;deg;C/2.2&amp;thinsp;&amp;deg;C in SWM and 1.6&amp;thinsp;&amp;deg;C/2.1&amp;thinsp;&amp;deg;C in NEM by the mid of century as projected through stabilization (RCP 4.5) and overshoot emission (RCP 8.5) pathways. Seasonal rainfall over Tiruchirappalli is expected to decrease with RCP4.5 and RCP8.5scenarios with different magnitude. Rainfall is expected to change to the tune of &amp;minus;1/&amp;minus;11 per cent in SWM and &amp;minus;2/&amp;minus;14 per cent in NEM by the mid of century as projected through stabilization (RCP 4.5) and overshoot emission (RCP 8.5) pathways.</p>


2019 ◽  
Vol 5 (10) ◽  
pp. 2152-2166 ◽  
Author(s):  
Han Thi Oo ◽  
Win Win Zin ◽  
Cho Cho Thin Kyi

Nowadays, the hydrological cycle which alters river discharge and water availability is affected by climate change. Therefore, the understanding of climate change is curial for the security of hydrologic conditions of river basins. The main purpose of this study is to assess the projections of future climate across the Upper Ayeyarwady river basin for its sustainable development and management of water sector for this area. Global Ten climate Models available from CMIP5 represented by the IPCC for its fifth Assessment Report were bias corrected using linear scaling method to generate the model error. Among the GCMs, a suitable climate model for each station is selected based on the results of performance indicators (R2 and RMSE). Future climate data are projected based on the selected suitable climate models by using future climate scenarios: RCP2.6, RCP4.5, and RCP8.5. According to this study, future projection indicates to increase in precipitation amounts in the rainy and winter season and diminishes in summer season under all future scenarios. Based on the seasonal temperature changes analysis for all stations,  the future temperature are  predicted to steadily increase with higher rates during summer than the other two seasons and it can also be concluded that the monthly minimum temperature rise is a bit larger than the maximum temperature rise in all seasons.


2020 ◽  
Vol 12 (20) ◽  
pp. 8373
Author(s):  
Matilda Cresso ◽  
Nicola Clerici ◽  
Adriana Sanchez ◽  
Fernando Jaramillo

Paramo ecosystems are tropical alpine grasslands, located above 3000 m.a.s.l. in the Andean mountain range. Their unique vegetation and soil characteristics, in combination with low temperature and abundant precipitation, create the most advantageous conditions for regulating and storing surface and groundwater. However, increasing temperatures and changing patterns of precipitation due to greenhouse-gas-emission climate change are threatening these fragile environments. In this study, we used regional observations and downscaled data for precipitation and minimum and maximum temperature during the reference period 1960–1990 and simulations for the future period 2041–2060 to study the present and future extents of paramo ecosystems in the Chingaza National Park (CNP), nearby Colombia’s capital city, Bogotá. The historical data were used for establishing upper and lower precipitation and temperature boundaries to determine the locations where paramo ecosystems currently thrive. Our results found that increasing mean monthly temperatures and changing precipitation will render 39 to 52% of the current paramo extent in CNP unsuitable for these ecosystems during the dry season, and 13 to 34% during the wet season. The greatest loss of paramo area will occur during the dry season and for the representative concentration pathway (RCP) scenario 8.5, when both temperature and precipitation boundaries are more prone to be exceeded. Although our initial estimates show the future impact on paramos and the water security of Bogotá due to climate change, complex internal and external interactions in paramo ecosystems make it essential to study other influencing climatic parameters (e.g., soil, topography, wind, etc.) apart from temperature and precipitation.


2010 ◽  
Vol 148 (6) ◽  
pp. 639-656 ◽  
Author(s):  
M. TRNKA ◽  
J. EITZINGER ◽  
M. DUBROVSKÝ ◽  
D. SEMERÁDOVÁ ◽  
P. ŠTĚPÁNEK ◽  
...  

SUMMARYThe reality of climate change has rarely been questioned in Europe in the last few years as a consensus has emerged amongst a wide range of national to local environmental and resource policy makers and stakeholders that climate change has been sufficiently demonstrated in a number of sectors. A number of site-based studies evaluating change of attainable yields of various crops have been conducted in Central Europe, but studies that evaluate agroclimatic potential across more countries in the region are rare. Therefore, the main aim of the present study was to develop and test a technique for a comprehensive evaluation of agroclimatic conditions under expected climate conditions over all of Central Europe with a high spatial resolution in order to answer the question posed in the title of the paper ‘Is rainfed crop production in central Europe at risk?’ The domain covers the entire area of Central Europe between latitudes 45° and 51·5°N and longitudes 8° and 27°E, including at least part of the territories of Austria, the Czech Republic, Germany, Hungary, Poland, Romania, Slovakia, Switzerland and Ukraine. The study is based on a range of agroclimatic indices that are designed to capture complex relations existing between climate and crops (their development and/or production) as well as the agrosystems as a whole. They provide information about various aspects of crop production, but they are not meant to compete with other and sometimes more suitable tools (e.g. process-based crop models, soil workability models, etc.). Instead, the selected indices can be seen as complementary to crop modelling tools that describe aspects not fully addressed or covered by crop models for an overall assessment of crop production conditions. The set of indices includes: sum of effective global radiation, number of effective growing days, Huglin index, water balance during the period from April to June (AMJ) and during the summer (JJA), proportion of days suitable for harvesting of field crops in June and July, and proportion of days suitable for sowing in early spring as well as during the autumn. The study concluded that while the uncertainties about future climate change impacts remain, the increase in the mean production potential of the domain as a whole (expressed in terms of effective global radiation and number of effective growing days) is likely a result of climate change, while inter-annual yield variability and risk may also increase. However, this is not true for the Pannonian (the lowlands between the Alps, the Carpathian Mountains and the Dinaric Alps) and Mediterranean parts of the domain, where increases in the water deficit will further limit rainfed agriculture but will probably lead to an increase in irrigation agriculture if local water resources are dwindling. Increases in the severity of the 20-year drought deficit and more substantial water deficits during the critical part of the growing season are very likely over the central and western part of the domain. Similarly, the inter-annual variability of water balance is likely to increase over the domain. There is also a chance of conditions for sowing during spring deteriorating due to unfavourable weather, which might increase the preference given to winter crops. This is already likely due to their ability to withstand spring drought stress events. Harvesting conditions in June (when harvest of some crops might take place in the future) are not improving beyond the present level, making the planning of the effective harvest time more challenging. Based on the evidence provided by the present study, it could be concluded that rainfed agriculture might indeed face more climate-related risks, but the overall conditions will probably allow for acceptable yield levels in most seasons. However, the evidence also suggests that the risk of extremely unfavourable years, resulting in poor economic returns, is likely to increase.


1970 ◽  
Vol 8 (3) ◽  
pp. 147-167 ◽  
Author(s):  
Yam K Rai ◽  
Bhakta B Ale ◽  
Jawed Alam

Climate change and global warming are burning issues, which significantly threat agriculture and global food security. Change in solar radiation, temperature and precipitation will influence the change in crop yields and hence economy of agriculture. It is possible to understand the phenomenon of climate change on crop production and to develop adaptation strategies for sustainability in food production, using a suitable crop simulation model. CERES-Rice model of DSSAT v4.0 was used to simulate the rice yield of the region under climate change scenarios using the historical weather data at Nepal Agriculture Research Council (NARC) Tarahara (1989-2008). The Crop Model was calibrated using the experimental crop data, climate data and soil data for two years (2000-2001) and was validated by using the data of the year 2002 at NARC Tarahara. In this study various scenarios were undertaken to analyze the rice yield. The change in values of weather parameters due to climate change and its effects on the rice yield were studied. It was observed that increase in maximum temperature up to 2°C and 1°C in minimum temperature have positive impact on rice yield but beyond that temperature it was observed negative impact in both cases of paddy production in ambient temperature. Similarly, it was observed that increased in mean temperature, have negative impacts on rice yield. The impact of solar radiation in rice yield was observed positive during the time of study period. Adjustments were made in the fertilizer rate, plant density per square meter, planting date and application of water rate to investigate suitable agronomic options for adaptation under the future climate change scenarios. Highest yield was obtained when the water application was increased up to 3 mm depth and nitrogen application rate was 140 kg/ha respectively. DOI: http://dx.doi.org/10.3126/jie.v8i3.5941 JIE 2011; 8(3): 147-167


Sign in / Sign up

Export Citation Format

Share Document