X-Ray Microanalysis in the Environmental SEM Using Mapping and Fourier Deconvolution Techniques

2001 ◽  
Vol 7 (S2) ◽  
pp. 708-709
Author(s):  
Matthew R. Phillips ◽  
Brendan Griffin ◽  
Dominque Drouin ◽  
Clive Nockolds ◽  
Guy Remond

X-ray microanalysis of any type of specimen in its natural state without the use of conventional SEM specimen preparation techniques has immense potential in a wide range of scientific and industrial applications. This capability would be particularly useful in microanalysis applications where it is highly desirable to preserve the integrity of the specimen, for example in semiconductor failure analysis and forensic investigations. in principle, this X-ray microanalysis goal can be achieved in an environmental or variable pressure scanning electron microscope (VPSEM) because specimen charging and vacuum stability problems are negated by the presence of a gas in the specimen chamber. However, the accuracy and spatial resolution of X-ray microanalysis in the VPSEM is significantly degraded by the chamber gas as it scatters primary beam electrons, generating spurious X-rays far from the analysis point. to date, two different X-ray measurement strategies have been developed to facilitate X-ray microanalysis at high chamber pressure in the VPSEM.

Author(s):  
Shawn Williams ◽  
Xiaodong Zhang ◽  
Susan Lamm ◽  
Jack Van’t Hof

The Scanning Transmission X-ray Microscope (STXM) is well suited for investigating metaphase chromosome structure. The absorption cross-section of soft x-rays having energies between the carbon and oxygen K edges (284 - 531 eV) is 6 - 9.5 times greater for organic specimens than for water, which permits one to examine unstained, wet biological specimens with resolution superior to that attainable using visible light. The attenuation length of the x-rays is suitable for imaging micron thick specimens without sectioning. This large difference in cross-section yields good specimen contrast, so that fewer soft x-rays than electrons are required to image wet biological specimens at a given resolution. But most imaging techniques delivering better resolution than visible light produce radiation damage. Soft x-rays are known to be very effective in damaging biological specimens. The STXM is constructed to minimize specimen dose, but it is important to measure the actual damage induced as a function of dose in order to determine the dose range within which radiation damage does not compromise image quality.


Author(s):  
D. A. Carpenter ◽  
M. A. Taylor

The development of intense sources of x rays has led to renewed interest in the use of microbeams of x rays in x-ray fluorescence analysis. Sparks pointed out that the use of x rays as a probe offered the advantages of high sensitivity, low detection limits, low beam damage, and large penetration depths with minimal specimen preparation or perturbation. In addition, the option of air operation provided special advantages for examination of hydrated systems or for nondestructive microanalysis of large specimens.The disadvantages of synchrotron sources prompted the development of laboratory-based instrumentation with various schemes to maximize the beam flux while maintaining small point-to-point resolution. Nichols and Ryon developed a microprobe using a rotating anode source and a modified microdiffractometer. Cross and Wherry showed that by close-coupling the x-ray source, specimen, and detector, good intensities could be obtained for beam sizes between 30 and 100μm. More importantly, both groups combined specimen scanning with modern imaging techniques for rapid element mapping.


Author(s):  
Steve Lindaas ◽  
Chris Jacobsen ◽  
Alex Kalinovsky ◽  
Malcolm Howells

Soft x-ray microscopy offers an approach to transmission imaging of wet, micron-thick biological objects at a resolution superior to that of optical microscopes and with less specimen preparation/manipulation than electron microscopes. Gabor holography has unique characteristics which make it particularly well suited for certain investigations: it requires no prefocussing, it is compatible with flash x-ray sources, and it is able to use the whole footprint of multimode sources. Our method serves to refine this technique in anticipation of the development of suitable flash sources (such as x-ray lasers) and to develop cryo capabilities with which to reduce specimen damage. Our primary emphasis has been on biological imaging so we use x-rays in the water window (between the Oxygen-K and Carbon-K absorption edges) with which we record holograms in vacuum or in air.The hologram is recorded on a high resolution recording medium; our work employs the photoresist poly(methylmethacrylate) (PMMA). Following resist “development” (solvent etching), a surface relief pattern is produced which an atomic force microscope is aptly suited to image.


2018 ◽  
Vol 620 ◽  
pp. A18 ◽  
Author(s):  
C. H. A. Logan ◽  
B. J. Maughan ◽  
M. N. Bremer ◽  
P. Giles ◽  
M. Birkinshaw ◽  
...  

Context. The XMM-XXL survey has used observations from the XMM-Newton observatory to detect clusters of galaxies over a wide range in mass and redshift. The moderate PSF (FWHM ~ 6″ on-axis) of XMM-Newton means that point sources within or projected onto a cluster may not be separated from the cluster emission, leading to enhanced luminosities and affecting the selection function of the cluster survey. Aims. We present the results of short Chandra observations of 21 galaxy clusters and cluster candidates at redshifts z > 1 detected in the XMM-XXL survey in X-rays or selected in the optical and infra-red. Methods. With the superior angular resolution of Chandra, we investigate whether there are any point sources within the cluster region that were not detected by the XMM-XXL analysis pipeline, and whether any point sources were misclassified as distant clusters. Results. Of the 14 X-ray selected clusters, 9 are free from significant point source contamination, either having no previously unresolved sources detected by Chandra or with less than about 10% of the reported XXL cluster flux being resolved into point sources. Of the other five sources, one is significantly contaminated by previously unresolved AGN, and four appear to be AGN misclassified as clusters. All but one of these cases are in the subset of less secure X-ray selected cluster detections and the false positive rate is consistent with that expected from the XXL selection function modelling. We also considered a further seven optically selected cluster candidates associated with faint XXL sources that were not classed as clusters. Of these, three were shown to be AGN by Chandra, one is a cluster whose XXL survey flux was highly contaminated by unresolved AGN, while three appear to be uncontaminated clusters. By decontaminating and vetting these distant clusters, we provide a pure sample of clusters at redshift z > 1 for deeper follow-up observations, and demonstrate the utility of using Chandra snapshots to test for AGN in surveys with high sensitivity but poor angular resolution.


2013 ◽  
Vol 46 (5) ◽  
pp. 1508-1512 ◽  
Author(s):  
Byron Freelon ◽  
Kamlesh Suthar ◽  
Jan Ilavsky

Coupling small-angle X-ray scattering (SAXS) and ultra-small-angle X-ray scattering (USAXS) provides a powerful system of techniques for determining the structural organization of nanostructured materials that exhibit a wide range of characteristic length scales. A new facility that combines high-energy (HE) SAXS and USAXS has been developed at the Advanced Photon Source (APS). The application of X-rays across a range of energies, from 10 to 50 keV, offers opportunities to probe structural behavior at the nano- and microscale. An X-ray setup that can characterize both soft matter or hard matter and high-Zsamples in the solid or solution forms is described. Recent upgrades to the Sector 15ID beamline allow an extension of the X-ray energy range and improved beam intensity. The function and performance of the dedicated USAXS/HE-SAXS ChemMatCARS-APS facility is described.


2016 ◽  
Vol 12 (S329) ◽  
pp. 355-358
Author(s):  
Peter Kretschmar ◽  
Silvia Martínez-Núñez ◽  
Enrico Bozzo ◽  
Lidia M. Oskinova ◽  
Joachim Puls ◽  
...  

AbstractStrong winds from massive stars are a topic of interest to a wide range of astrophysical fields. In High-Mass X-ray Binaries the presence of an accreting compact object on the one side allows to infer wind parameters from studies of the varying properties of the emitted X-rays; but on the other side the accretor’s gravity and ionizing radiation can strongly influence the wind flow. Based on a collaborative effort of astronomers both from the stellar wind and the X-ray community, this presentation attempts to review our current state of knowledge and indicate avenues for future progress.


2001 ◽  
Vol 7 (S2) ◽  
pp. 882-883
Author(s):  
Masako Nishimura ◽  
Sukehiro Itoh ◽  
Steve Joens

The use of variable pressure SEMs (VP-SEMs) is increasing in various fields of science and industry, allowing microscopy in a variable pressure environment of 1 ∼ 270 Pa utilizing backscattered electrons for imaging. The VP-SEM allows microscopy of insulated samples without the need for sample preparation. Charging artifacts can be minimized as well. When the VP-SEM is operated with a cooling stage, which allows cooling of samples at −20° and above, vaporization of water from samples is reduced. This permits microscopy of wet samples at close to the natural state for extended periods of time.Poor S/N ratio and deterioration of resolution, both of which are due to collisions among residual gas molecules and primary/backscattered electrons, have limited the performance of VP-SEMs. For resolving these limitations, we have completed the development of a new field emission VP-SEM which operates with a stable Schottky field emission source, a new environmental secondary electron detector (ESED), and a multi-stage differential pumping system. Fig. 1 shows a sectional view of the column with the differential pumping system. This design allows stable gun vacuum conditions with variable specimen chamber pressure 10 through 3,000 Pa, permitting a pressure difference from the gun by 1011 Pa without problems.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Alexandra Guerreiro ◽  
Nicholas Chatterton ◽  
Eleanor M. Crabb ◽  
Jon P. Golding

Abstract Background A wide range of nanoparticles (NPs), composed of different elements and their compounds, are being developed by several groups as possible radiosensitisers, with some already in clinical trials. However, no systematic experimental survey of the clinical X-ray radiosensitising potential of different element nanoparticles has been made. Here, we directly compare the irradiation-induced (10 Gy of 6-MV X-ray photon) production of hydroxyl radicals, superoxide anion radicals and singlet oxygen in aqueous solutions of the following metal oxide nanoparticles: Al2O3, SiO2, Sc2O3, TiO2, V2O5, Cr2O3, MnO2, Fe3O4, CoO, NiO, CuO, ZnO, ZrO2, MoO3, Nd2O3, Sm2O3, Eu2O3, Gd2O3, Tb4O7, Dy2O3, Er2O3 and HfO2. We also examine DNA damage due to these NPs in unirradiated and irradiated conditions. Results Without any X-rays, several NPs produced more radicals than water alone. Thus, V2O5 NPs produced around 5-times more hydroxyl radicals and superoxide radicals. MnO2 NPs produced around 10-times more superoxide anions and Tb4O7 produced around 3-times more singlet oxygen. Lanthanides produce fewer hydroxyl radicals than water. Following irradiation, V2O5 NPs produced nearly 10-times more hydroxyl radicals than water. Changes in radical concentrations were determined by subtracting unirradiated values from irradiated values. These were then compared with irradiation-induced changes in water only. Irradiation-specific increases in hydroxyl radical were seen with most NPs, but these were only significantly above the values of water for V2O5, while the Lanthanides showed irradiation-specific decreases in hydroxyl radical, compared to water. Only TiO2 showed a trend of irradiation-specific increase in superoxides, while V2O5, MnO2, CoO, CuO, MoO3 and Tb4O7 all demonstrated significant irradiation-specific decreases in superoxide, compared to water. No irradiation-specific increases in singlet oxygen were seen, but V2O5, NiO, CuO, MoO3 and the lanthanides demonstrated irradiation-specific decreases in singlet oxygen, compared to water. MoO3 and CuO produced DNA damage in the absence of radiation, while the highest irradiation-specific DNA damage was observed with CuO. In contrast, MnO2, Fe3O4 and CoO were slightly protective against irradiation-induced DNA damage. Conclusions Beyond identifying promising metal oxide NP radiosensitisers and radioprotectors, our broad comparisons reveal unexpected differences that suggest the surface chemistry of NP radiosensitisers is an important criterion for their success.


1988 ◽  
Vol 32 ◽  
pp. 115-120 ◽  
Author(s):  
D. A. Carpenter ◽  
M. A. Taylor ◽  
C. E. Holcombe

A laboratory-based X-ray microprobe, composed of a high-brilliance microfocus X-ray tube, coupled with a small glass capillary, has been developed for materials applications. Because of total external reflectance of X rays from the smooth inside bore of the glass capillary, the microprobe has a high sensitivity as well as a high spatial resolution. The use of X rays to excite elemental fluorescence offers the advantages of good peak-to-background, the ability to operate in air, and minimal specimen preparation. In addition, the development of laboratory-based instrumentation has been of Interest recently because of greater accessibility when compared with synchrotron X-ray microprobes.


1997 ◽  
Vol 3 (S2) ◽  
pp. 851-852
Author(s):  
H. Ade

Infrared, Raman, and fluorescence/luminescence microspectroscopy/microscopy in many instances seek to provide high sensitivity compositional and functional information that goes beyond mere elemental composition. This goal is shared by NEXAFS microscopy, in which Near Edge X-ray Absorption Fine Structure (NEXAFS) spectroscopy is employed to provide chemical sensitivity and can be relatively easily adopted in a scanning transmission x-ray microscope (STXM). In addition to compositional information, NEXAFS microscopy can exploit the dependence of x-ray absorption resonances on the bond orientation relative to the linearly polarized x rays (linear dichroism microscopy). For compositional analysis, NEXAFS microscopy is analogous to Electron Energy Loss Spectroscopy (EELS) in an electron microscope. However, when utilizing near edge spectral features, NEXAFS microscopy requires a considerable lower dose than EELS microscopy which makes it very suitable to studying radiation sensitive materials such as polymers. NEXAFS has shown to have excellent sensitivity to a wide range of moieties in polymers, including sensitivity to substitution isomerism.


Sign in / Sign up

Export Citation Format

Share Document