Cationic Liposome-DNA Complexes: Polymorphism versus Transfection Activity

2000 ◽  
Vol 6 (S2) ◽  
pp. 854-855
Author(s):  
B. Sternberg-Papahadjopoulos ◽  
K. Hong ◽  
W. Zheng ◽  
D. Papahadjopoulos

Complexes formed during interaction of cationic liposomes with polynucleotides such as DNA (CLDC) self-assemble into a variety of polymorphic structures. They display bilayer (FIG. 1-5) and non-bilayer structures (FIG. 6). We have recorded bilayer structures such as spaghetti/meatball-type structures (FIG. I), map-pins (FIG. 2) spherical particles and invaginated liposomes (FIG. 3, 4) and oligolamellar structures (FIG. 5). The non-bilayer lipid arrangements include honeycombtype structure (Hn, FIG. 6) and cubic phase lipids.We have chosen mainly freeze-fracture electron microscopy (FIG. 1-3, 5,6) but also cryo-electron microscopy (FIG.4) for recording polymorphic structures, and for studying factors and conditions triggering the formation and stabilization of specific structure types. Furthermore, we took microscopically snapshots of the interaction of specific structure types with cultured cells. In order to find out the “active” structure in terms of transfection, we investigated the transfection activity both in vivo and in vitro of CLDC, and studied in parallel their morphology in serum as well as in cell medium.

1999 ◽  
Vol 5 (S2) ◽  
pp. 1108-1109
Author(s):  
Brigitte Sternberg ◽  
Keelung Hong ◽  
Weiwen Zheng ◽  
Demetrios Papahadjopoulos

Complexes formed during interaction of cationic liposomes with poly-nucleotides such as DNA (CLDC) display a variety of polymorphic and metastable structures. These include multilamellar structures of alternating lipid bilayers and DNA monolayers; fibrillar structures, among them spaghetti-liketubules (Figure 1), and map-pin-structures(Figure 2), and, finally, non-bilayer lipid arrangements, such as hexagonal (HII) (Figure 3) and cubic phases.In order to find out the “active” structure(s) in terms of transfection, we investigated the transfection activity both in vivoand in vitroof CLDC composed of the lipid DDAB (dimethyl-dioctadecylammonium bromide) and Choi (cholesterol) or DOPE (l,2-dioleoyl-sn-glycerol-3- phosphoethanolamine) as helper lipids. In parallel we studied their morphology by freeze-fracture electron microscopy.The in vivostudies were carried out in mice following i.v. injection and therefore the morphology of the CLDC was investigated in mouse serum.


Author(s):  
Ramsey N. Majzoub ◽  
Kai K. Ewert ◽  
Cyrus R. Safinya

Cationic liposomes (CLs) are synthetic carriers of nucleic acids in gene delivery and gene silencing therapeutics. The introduction will describe the structures of distinct liquid crystalline phases of CL–nucleic acid complexes, which were revealed in earlier synchrotron small-angle X-ray scattering experiments. When mixed with plasmid DNA, CLs containing lipids with distinct shapes spontaneously undergo topological transitions into self-assembled lamellar, inverse hexagonal, and hexagonal CL–DNA phases. CLs containing cubic phase lipids are observed to readily mix with short interfering RNA (siRNA) molecules creating double gyroid CL–siRNA phases for gene silencing. Custom synthesis of multivalent lipids and a range of novel polyethylene glycol (PEG)-lipids with attached targeting ligands and hydrolysable moieties have led to functionalized equilibrium nanoparticles (NPs) optimized for cell targeting, uptake or endosomal escape. Very recent experiments are described with surface-functionalized PEGylated CL–DNA NPs, including fluorescence microscopy colocalization with members of the Rab family of GTPases, which directly reveal interactions with cell membranes and NP pathways. In vitro optimization of CL–DNA and CL–siRNA NPs with relevant primary cancer cells is expected to impact nucleic acid therapeutics in vivo . This article is part of the themed issue ‘Soft interfacial materials: from fundamentals to formulation’.


Author(s):  
M.J. Murphy ◽  
R.R. Price ◽  
J.C. Sloman

The in vitro human tumor cloning assay originally described by Salmon and Hamburger has been applied recently to the investigation of differential anti-tumor drug sensitivities over a broad range of human neoplasms. A major problem in the acceptance of this technique has been the question of the relationship between the cultured cells and the original patient tumor, i.e., whether the colonies that develop derive from the neoplasm or from some other cell type within the initial cell population. A study of the ultrastructural morphology of the cultured cells vs. patient tumor has therefore been undertaken to resolve this question. Direct correlation was assured by division of a common tumor mass at surgical resection, one biopsy being fixed for TEM studies, the second being rapidly transported to the laboratory for culture.


Author(s):  
Frederick A. Murphy ◽  
Alyne K. Harrison ◽  
Sylvia G. Whitfield

The bullet-shaped viruses are currently classified together on the basis of similarities in virion morphology and physical properties. Biologically and ecologically the member viruses are extremely diverse. In searching for further bases for making comparisons of these agents, the nature of host cell infection, both in vivo and in cultured cells, has been explored by thin-section electron microscopy.


Author(s):  
Raul I. Garcia ◽  
Evelyn A. Flynn ◽  
George Szabo

Skin pigmentation in mammals involves the interaction of epidermal melanocytes and keratinocytes in the structural and functional unit known as the Epidermal Melanin Unit. Melanocytes(M) synthesize melanin within specialized membrane-bound organelles, the melanosome or pigment granule. These are subsequently transferred by way of M dendrites to keratinocytes(K) by a mechanism still to be clearly defined. Three different, though not necessarily mutually exclusive, mechanisms of melanosome transfer have been proposed: cytophagocytosis by K of M dendrite tips containing melanosomes, direct injection of melanosomes into the K cytoplasm through a cell-to-cell pore or communicating channel formed by localized fusion of M and K cell membranes, release of melanosomes into the extracellular space(ECS) by exocytosis followed by K uptake using conventional phagocytosis. Variability in methods of transfer has been noted both in vivo and in vitro and there is evidence in support of each transfer mechanism. We Have previously studied M-K interactions in vitro using time-lapse cinemicrography and in vivo at the ultrastructural level using lanthanum tracer and freeze-fracture.


Author(s):  
N.K.R. Smith ◽  
K.E. Hunter ◽  
P. Mobley ◽  
L.P. Felpel

Electron probe energy dispersive x-ray microanalysis (XRMA) offers a powerful tool for the determination of intracellular elemental content of biological tissue. However, preparation of the tissue specimen , particularly excitable central nervous system (CNS) tissue , for XRMA is rather difficult, as dissection of a sample from the intact organism frequently results in artefacts in elemental distribution. To circumvent the problems inherent in the in vivo preparation, we turned to an in vitro preparation of astrocytes grown in tissue culture. However, preparations of in vitro samples offer a new and unique set of problems. Generally, cultured cells, growing in monolayer, must be harvested by either mechanical or enzymatic procedures, resulting in variable degrees of damage to the cells and compromised intracel1ular elemental distribution. The ultimate objective is to process and analyze unperturbed cells. With the objective of sparing others from some of the same efforts, we are reporting the considerable difficulties we have encountered in attempting to prepare astrocytes for XRMA.Tissue cultures of astrocytes from newborn C57 mice or Sprague Dawley rats were prepared and cultured by standard techniques, usually in T25 flasks, except as noted differently on Cytodex beads or on gelatin. After different preparative procedures, all samples were frozen on brass pins in liquid propane, stored in liquid nitrogen, cryosectioned (0.1 μm), freeze dried, and microanalyzed as previously reported.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii214-ii214
Author(s):  
Jenna Minami ◽  
Nicholas Bayley ◽  
Christopher Tse ◽  
Henan Zhu ◽  
Danielle Morrow ◽  
...  

Abstract Metabolic reprogramming is a hallmark of cancer, and malignant cells must acquire metabolic adaptations to fuel neoplastic progression. Mutations or changes in metabolic gene expression can impose nutrient dependencies in tumors, and even in the absence of metabolic defects, cancer cells can become auxotrophic for particular nutrients or metabolic byproducts generated by other cells in the tumor microenvironment (TME). Conventional cell lines do not recapitulate the metabolic heterogeneity of glioblastoma (GBM), while primary cultured cells do not account for the influences of the microenvironment and the blood brain barrier on tumor biology. Additionally, these systems are under strong selective pressure divergent from that in vivo, leading to reduced heterogeneity between cultured tumor cells. Here, we describe a biobank of direct-from-patient derived orthotopic xenografts (GliomaPDOX) and gliomaspheres that reveal a subset of gliomas that, while able to form in vivo, cannot survive in vitro. RNA sequencing of tumors that can form both in vivo and in vitro (termed “TME-Indifferent”) compared to that of tumors that can only form in vivo (termed “TME-Dependent”) revealed transcriptional changes associated with altered nutrient availability, emphasizing the unique metabolic programs impacted by the tumor microenvironment. Furthermore, TME-dependent tumors lack metabolic signatures associated with nutrient biosynthesis, thus indicating a potential dependency of these tumors on scavenging specific nutrients from the extracellular milieu. Collectively, these data emphasize the metabolic heterogeneity within GBM, and reveal a subset of gliomas that lack metabolic plasticity, indicating a potential brain-microenvironment specific metabolic dependency that can be targeted for therapy.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 825
Author(s):  
Saman Sargazi ◽  
Mohammad Reza Hajinezhad ◽  
Abbas Rahdar ◽  
Muhammad Nadeem Zafar ◽  
Aneesa Awan ◽  
...  

In this research, tin ferrite (SnFe2O4) NPs were synthesized via hydrothermal route using ferric chloride and tin chloride as precursors and were then characterized in terms of morphology and structure using Fourier-transform infrared spectroscopy (FTIR), Ultraviolet–visible spectroscopy (UV-Vis), X-ray power diffraction (XRD), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), and Brunauer–Emmett–Teller (BET) method. The obtained UV-Vis spectra was used to measure band gap energy of as-prepared SnFe2O4 NPs. XRD confirmed the spinel structure of NPs, while SEM and TEM analyses disclosed the size of NPs in the range of 15–50 nm and revealed the spherical shape of NPs. Moreover, energy dispersive X-ray spectroscopy (EDS) and BET analysis was carried out to estimate elemental composition and specific surface area, respectively. In vitro cytotoxicity of the synthesized NPs were studied on normal (HUVEC, HEK293) and cancerous (A549) human cell lines. HUVEC cells were resistant to SnFe2O4 NPs; while a significant decrease in the viability of HEK293 cells was observed when treated with higher concentrations of SnFe2O4 NPs. Furthermore, SnFe2O4 NPs induced dramatic cytotoxicity against A549 cells. For in vivo study, rats received SnFe2O4 NPs at dosages of 0, 0.1, 1, and 10 mg/kg. The 10 mg/kg dose increased serum blood urea nitrogen and creatinine compared to the controls (P < 0.05). The pathology showed necrosis in the liver, heart, and lungs, and the greatest damages were related to the kidneys. Overall, the in vivo and in vitro experiments showed that SnFe2O4 NPs at high doses had toxic effects on lung, liver and kidney cells without inducing toxicity to HUVECs. Further studies are warranted to fully elucidate the side effects of SnFe2O4 NPs for their application in theranostics.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shojiro Katoh ◽  
Atsuki Fujimaru ◽  
Masaru Iwasaki ◽  
Hiroshi Yoshioka ◽  
Rajappa Senthilkumar ◽  
...  

AbstractRegenerative medicine applications require cells that are not inflicted with senescence after in vitro culture for an optimal in vivo outcome. Methods to overcome replicative senescence include genomic modifications which have their own disadvantages. We have evaluated a three-dimensional (3D) thermo-reversible gelation polymer (TGP) matrix environment for its capabilities to reverse cellular senescence. The expression of senescence-associated beta-galactosidase (SA-βgal) by human chondrocytes from osteoarthritis-affected cartilage tissue, grown in a conventional two-dimensional (2D) monolayer culture versus in 3D-TGP were compared. In 2D, the cells de-differentiated into fibroblasts, expressed higher SA-βgal and started degenerating at 25 days. SA-βgal levels decreased when the chondrocytes were transferred from the 2D to the 3D-TGP culture, with cells exhibiting a tissue-like growth until 42–45 days. Other senescence associated markers such as p16INK4a and p21 were also expressed only in 2D cultured cells but not in 3D-TGP tissue engineered cartilage. This is a first-of-its-kind report of a chemically synthesized and reproducible in vitro environment yielding an advantageous reversal of aging of human chondrocytes without any genomic modifications. The method is worth consideration as an optimal method for growing cells for regenerative medicine applications.


Cells ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 106
Author(s):  
Yeongji Yu ◽  
Hyejin Kim ◽  
SeokGyeong Choi ◽  
JinSuh Yu ◽  
Joo Yeon Lee ◽  
...  

The elimination of the cancer stem cell (CSC) population may be required to achieve better outcomes of cancer therapy. We evaluated stearoyl-CoA desaturase 1 (SCD1) as a novel target for CSC-selective elimination in colon cancer. CSCs expressed more SCD1 than bulk cultured cells (BCCs), and blocking SCD1 expression or function revealed an essential role for SCD1 in the survival of CSCs, but not BCCs. The CSC potential selectively decreased after treatment with the SCD1 inhibitor in vitro and in vivo. The CSC-selective suppression was mediated through the induction of apoptosis. The mechanism leading to selective CSC death was investigated by performing a quantitative RT-PCR analysis of 14 CSC-specific signaling and marker genes after 24 and 48 h of treatment with two concentrations of an inhibitor. The decrease in the expression of Notch1 and AXIN2 preceded changes in the expression of all other genes, at 24 h of treatment in a dose-dependent manner, followed by the downregulation of most Wnt- and NOTCH-signaling genes. Collectively, we showed that not only Wnt but also NOTCH signaling is a primary target of suppression by SCD1 inhibition in CSCs, suggesting the possibility of targeting SCD1 against colon cancer in clinical settings.


Sign in / Sign up

Export Citation Format

Share Document