scholarly journals Fossil trees, tree moulds and tree casts in the Palaeocene Mull Lava Field, NW Scotland: context, formation and implications for lava emplacement

Author(s):  
Brian R. Bell ◽  
Ian T. Williamson

ABSTRACTMegafossils and macrofossils of terrestrial plants (trees, leaves, fruiting bodies, etc.) are found in sedimentary and pyroclastic units interbedded with lavas in many ancient lava fields worldwide, attesting to subaerial environments of eruption and the establishment of viable plant communities during periods of volcanic quiescence. Preservation within lava is relatively rare and generally confined to the more robust woody tissues of trees, which are then revealed in the form of charcoal, mineralised tissue or as trace fossil moulds (tree moulds) and casts of igneous rock (tree casts, s.s.).In this contribution, we document several such fossil trees (s.l.), and the lavas with which they are associated, from the Palaeocene Mull Lava Field (MLF) on the Isle of Mull, NW Scotland. We present the first detailed geological account of a unique site within the Mull Plateau Lava Formation (MPLF) at Quinish in the north of the island and provide an appraisal of the famous upright fossil tree – MacCulloch's Tree – remotely located on the Ardmeanach Peninsula on the west coast of the island, and another large upright tree (the Carsaig Tree) near Malcolm's Point in the district of Brolass, SW Mull; both occurring within the earlier Staffa Lava Formation (SLF). The taphonomy of these megafossils, along with palynological and lithofacies assessments of associated strata, allows speculation of likely taxonomic affinity and the duration of hiatuses supporting the establishment of forest/woodland communities. The Ardmeanach and Carsaig specimens, because of their size and preservation as upright (? in situ) casts enveloped by spectacularly columnar-jointed basaltic lava, appear to be unique. The aspect of these trees, the thickness of the enveloping lavas and the arrangement of cooling joints adjacent to the trees, implies rapid emplacement, ponding and slow, static cooling of voluminous and highly fluid basaltic magma. The specimens from Quinish include two prostrate casts and several prostrate moulds that collectively have a preferred orientation, aligning approximately perpendicular to that of the regional Mull Dyke Swarm, the putative fissure source of the lavas, suggesting local palaeo-flow was directed towards the WSW. The Quinish Lava is an excellent example of a classic pāhoehoe (compound-braided) type, preserving some of the best examples of surface and internal features so far noted from the Hebridean Igneous Province (HIP) lava fields.These Mull megafossils are some of the oldest recorded examples, remarkably well preserved, and form a significant feature of the island's geotourism industry.

2009 ◽  
Vol 46 (3) ◽  
pp. 155-167 ◽  
Author(s):  
Steven W. Denyszyn ◽  
Don W. Davis ◽  
Henry C. Halls

The north–south-trending Clarence Head dyke swarm, located on Devon and Ellesmere Islands in the Canadian High Arctic, has a trend orthogonal to that of the Neoproterozoic Franklin swarm that surrounds it. The Clarence Head dykes are dated by the U–Pb method on baddeleyite to between 716 ± 1 and 713 ± 1 Ma, ages apparently younger than, but within the published age range of, the Franklin dykes. Alpha recoil in baddeleyite is considered as a possible explanation for the difference in ages, but a comparison of the U–Pb ages of grains of equal size from both swarms suggests that recoil distances in baddeleyite are lower than those in zircon and that the Clarence Head dykes are indeed a distinctly younger event within the period of Franklin magmatism. The Clarence Head dykes represent a large swarm tangential to, and cogenetic with, a giant radiating dyke swarm ∼800 km from the indicated source. The preferred mechanism for the emplacement of the Clarence Head dykes is the exploitation of concentric zones of extension around a depleting and collapsing plume source. While the paleomagnetism of most Clarence Head dykes agrees with that of the Franklin dykes, two dykes have anomalous remanence directions, interpreted to be a chemical remanent magnetization carried by pyrrhotite. The pyrrhotite was likely deposited from fluids mobilized southward from the Devonian Ellesmerian Orogeny to the north that used the interiors of the dykes as conduits and precipitated pyrrhotite en route.


1989 ◽  
Vol 126 (4) ◽  
pp. 397-405 ◽  
Author(s):  
D. E. Kitchen

AbstractA regional Tertiary basaltic dyke swarm intensifies within a Caledonian granite at Barnesmore, Co. Donegal. Rapid heating along the contact of one (possible feeder) dyke resulted in disequilibrium partial melting of granite wall-rock and the generation of a range in melt composition by the in situ melting of feldspar. The compositional variability of the melt is preserved in a glass containing feldspar spherulites and other quench phases which suggest rapid cooling. During partial melting the trace elements, Rb, Sr, and Ba were mobile and have been concentrated in glassy melted granite close to the contact of one dyke. The textures, mineralogy and geochemistry of dolerite in two dykes indicate localized bulk contamination and mixing with melted granite. This had a particularly marked effect on the crystallization of pyroxene and resulted in a wide range in mineral composition reflecting the degree of contamination. The intensification of a regional dyke swarm in well-jointed granite might control the siting of some major intrusive centres. Granite melted and mixed with basaltic magma may contribute to the evolution of granites in such centres.


Lithos ◽  
2008 ◽  
Vol 101 (3-4) ◽  
pp. 260-280 ◽  
Author(s):  
Peng Peng ◽  
Mingguo Zhai ◽  
Richard E. Ernst ◽  
Jinghui Guo ◽  
Fu Liu ◽  
...  

Author(s):  
Brian R. Bell ◽  
Ian T. Williamson

ABSTRACTThe twin summits of Preshal More and Preshal Beg, near Talisker, Isle of Skye, comprise the erosional remnants of a thick (at least 120 m) compound olivine tholeiite lava, or flow field, that ponded in palaeo-valleys within the Palaeocene lava field of west-central Skye. This unique flow field constitutes the Talisker Formation and is the youngest preserved extrusive unit of the Skye Lava Field. The lava inundated a complex of palaeo-valleys incised into the higher stratigraphical levels of the existing lava field, and remnants of the original sedimentary fill of these valleys still exist, the Preshal Beg Conglomerate Formation. The lava displays spectacularly well-developed two-tier (colonnade-entablature) columnar joint sets that formed as a consequence of slow, uninterrupted cooling through its base and sidewalls, aided by groundwater circulation and water ingress (from displaced drainage) directed into the lava's interior by master-joint systems. Intrusive phenomena developed at both the base and the top of the lava and there is evidence for the existence of subsurface feeder tubes. The tholeiitic composition of the Talisker Formation lava contrasts with the transitional, mildly alkaline characteristics of the remainder of the (older) lavas of Skye Lava Field. In broad terms, the Talisker Formation lava is compositionally very similar to the suite of cone-sheets emplaced into the oldest of the four intrusive centres that comprise the Skye Central Complex – the Cuillin Intrusive Centre – together with a high proportion of the Skye regional dyke swarm. The stratigraphical position, field relationships and compositional characteristics of the lava indicate that it was erupted and emplaced as an intracanyon-style flow field during the early shield-building stage in the growth of the (tholeiitic) Cuillin Volcano, which post-dates the main Skye ‘plateau’ Lava Field. Although the remnant outcrops are detached from their likely source area through erosion, this tholeiitic lava provides the first direct evidence linking the central complexes of the British Palaeogene Igneous Province and their eruptive products.


2020 ◽  
Author(s):  
Mark Cooper ◽  
Simon Tapster ◽  
Dan Condon

<p>The Northern Ireland sector of the North Atlantic Large Igneous Province (NIAP) is the biggest onshore exposure of the British and Irish Igneous Province. The Antrim Lava Group is composed mostly of flood basalt sequences (Lower and Upper Basalt formations) with associated acid-basic central complexes, dyke swarms, plugs and sill complexes (Cooper 2004; Cooper & Johnston 2004; Cooper et al. 2012) that display unconformable and cross cutting field relationships. This study has for the first time generated a self-consistent and representative chronology using high-precision CA-ID-TIMS U-Pb zircon isotopic dating across the range of lithologies to provide a fuller picture of how the region was operating during the Paleogene.</p><p>Results indicate that punctuated magmatism within the north of Ireland lasted at least c. 5.5 Myrs from c.61.5 to 56 Ma. The 61.5 Ma age comes from magmatic zircons from a paleosoil immediately below the Lower Basalt Formation (LBF), and is believed to represent the onset of magmatism in the region. This age is matched by that of the Killala-Erne Dyke Swarm (c.61.5 to c.61 Ma) which is now considered to have fed melt to LBF lava flows. Dates of c.61 Ma for the Tardree and c.60.7 Ma for Slieve Gullion igneous complexes are the youngest of this grouping which together spans about 1 Myrs and may represent the igneous activity associated with a single pulse of the Icelandic Plume.</p><p>Following the initial activity there was a break in magmatism-volcanism which lead to the development of a thick weathering profile referred to as the Interbasaltic Formation. We then see the development of a regionally significant unconformity and deposition of the Coagh Conglomerate Member which includes clasts of Tardree Complex (or similar) rhyolite. This was followed by extrusion of the Causeway Tholeiite Member (CTM) and Upper Basalt Formation (UBF) across the region. A new age for the Portrush Sill Complex at c. 58.5 Ma provides a constraint on this episode of magmatism, however, it the combination of regional unconformity, outpouring of flood basalts and other magmatism that suggest a second pulse may be represented.</p><p>The Mourne Mountains Complex at c.56-56.5 Ma is not associated with flood basalts in Northern Ireland, however, in Scotland basalts of the Upper Skye Lava Formation are of similar age to the Mourne granites and together they might represent a third pulse of the plume in the region.</p><p>New U-Pb zircon geochronology has allowed for significant reinterpretation of the regional scale geology and stratigraphy of the Antrim Lava Group. Geochronological constraints define an early episode of igneous activity that is separated from the next by a prolonged period of weathering and the formation of a regionally significant unconformity. In summary three temporally discrete episodes of magmatism and tectonics with 1-2 Myr periodicity are observed that we believe resulted from a pulsing Icelandic Plume head.</p>


2020 ◽  
pp. 1-14
Author(s):  
Richard D. Ray ◽  
Kristine M. Larson ◽  
Bruce J. Haines

Abstract New determinations of ocean tides are extracted from high-rate Global Positioning System (GPS) solutions at nine stations sitting on the Ross Ice Shelf. Five are multi-year time series. Three older time series are only 2–3 weeks long. These are not ideal, but they are still useful because they provide the only in situ tide observations in that sector of the ice shelf. The long tide-gauge observations from Scott Base and Cape Roberts are also reanalysed. They allow determination of some previously neglected tidal phenomena in this region, such as third-degree tides, and they provide context for analysis of the shorter datasets. The semidiurnal tides are small at all sites, yet M2 undergoes a clear seasonal cycle, which was first noted by Sir George Darwin while studying measurements from the Discovery expedition. Darwin saw a much larger modulation than we observe, and we consider possible explanations - instrumental or climatic - for this difference.


2021 ◽  
Vol 568 ◽  
pp. 117016
Author(s):  
Nolwenn Le Gall ◽  
Fabio Arzilli ◽  
Giuseppe La Spina ◽  
Margherita Polacci ◽  
Biao Cai ◽  
...  

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Martin Edwards ◽  
Pierre Hélaouët ◽  
Eric Goberville ◽  
Alistair Lindley ◽  
Geraint A. Tarling ◽  
...  

AbstractIn the North Atlantic, euphausiids (krill) form a major link between primary production and predators including commercially exploited fish. This basin is warming very rapidly, with species expected to shift northwards following their thermal tolerances. Here we show, however, that there has been a 50% decline in surface krill abundance over the last 60 years that occurred in situ, with no associated range shift. While we relate these changes to the warming climate, our study is the first to document an in situ squeeze on living space within this system. The warmer isotherms are shifting measurably northwards but cooler isotherms have remained relatively static, stalled by the subpolar fronts in the NW Atlantic. Consequently the two temperatures defining the core of krill distribution (7–13 °C) were 8° of latitude apart 60 years ago but are presently only 4° apart. Over the 60 year period the core latitudinal distribution of euphausiids has remained relatively stable so a ‘habitat squeeze’, with loss of 4° of latitude in living space, could explain the decline in krill. This highlights that, as the temperature warms, not all species can track isotherms and shift northward at the same rate with both losers and winners emerging under the ‘Atlantification’ of the sub-Arctic.


2012 ◽  
Vol 53 (60) ◽  
pp. 257-266 ◽  
Author(s):  
E. Rignot ◽  
I. Fenty ◽  
D. Menemenlis ◽  
Y. Xu

AbstractWe examine the pattern of spreading of warm subtropical-origin waters around Greenland for the years 1992–2009 using a high-resolution (4km horizontal grid) coupled ocean and sea-ice simulation. The simulation, provided by the Estimating the Circulation and Climate of the Ocean, Phase II (ECCO2) project, qualitatively reproduces the observed warming of subsurface waters in the subpolar gyre associated with changes of the North Atlantic atmospheric state that occurred in the mid-1990s. The modeled subsurface ocean temperature warmed by 1.5˚C in southeast and southwest Greenland during 1994–2005 and subsequently cooled by 0.5˚C; modeled subsurface ocean temperature increased by 2–2.5˚C in central and then northwest Greenland during 1997–2005 and stabilized thereafter, while it increased after 2005 by <0.5˚C in north Greenland. Comparisons with in situ measurements off the continental shelf in the Labrador and Irminger Seas indicate that the model initial conditions were 0.4˚C too warm in the south but the simulated warming is correctly reproduced; while measurements from eastern Baffin Bay reveal that the model initial conditions were 1.0˚C too cold in the northwest but the simulated ocean warming brought modeled temperature closer to observations, i.e. the simulated warming is 1.0˚C too large. At several key locations, the modeled oceanic changes off the shelf and below the seasonal mixed layer were rapidly transmitted to the shelf within troughs towards (model-unresolved) fjords. Unless blocked in the fjords by shallow sills, these warm subsurface waters had potential to propagate down the fjords and melt the glacier fronts. Based on model sensitivity simulations from an independent study (Xu and others, 2012), we show that the oceanic changes have very likely increased the subaqueous melt rates of the glacier fronts, and in turn impacted the rates of glacier flow.


Sign in / Sign up

Export Citation Format

Share Document