scholarly journals Noise conversion of Schottky diodes in mm-wave detectors under different nonlinear regimes: modeling and simulation versus measurement

2015 ◽  
Vol 8 (3) ◽  
pp. 479-493 ◽  
Author(s):  
Jéssica Gutiérrez ◽  
Kaoutar Zeljami ◽  
Enrique Villa ◽  
Beatriz Aja ◽  
Maria Luisa de la Fuente ◽  
...  

This paper presents and discusses several methods for predicting the low-frequency (LF) noise at the output of a mm-wave detector. These methods are based on the extraction of LF noise source parameters from the single diode under a specific set of bias conditions and the transfer or conversion of these noise sources, under different operating conditions including cyclostationary regime, to the quasi-dc output of a mm-wave detector constructed with the same model of diode. The noise analysis is based on a conversion-matrix type formulation, which relates the carrier noisy sidebands of the input signal with the detector output spectrum through a pair of transfer functions obtained in commercial software. Measurements of detectors in individual and differential setups will be presented and compared with predictions.

2021 ◽  
Vol 263 (4) ◽  
pp. 2590-2600
Author(s):  
Luiz Henrique Mesa Casa Pereira ◽  
Björn Knöfel ◽  
Jan Troge ◽  
Welf-Guntram Drossel ◽  
Marcel Klein ◽  
...  

Research on the relation between exposure to noise and cognitive performance inside industrial environments is not as broad as on office environments. For a better understanding of the specific industrial noise problems, participants performed arithmetic tests inside a hemi anechoic room while they were exposed to sounds of five typical industrial noise sources. The subjects also classified how annoying they perceived the noise signals. The effect of noise on the arithmetic test's performance was larger on accuracy than on velocity, which was verified using a Student t-test. Spectral-temporal characteristics - especially high frequency content and strong low frequency modulation - appear to relate better with lower performance on the test than high sound levels. Subjects that evaluated noise as more annoying performed worse in a final arithmetic test (under silence) after being exposed to the noises, indicating a possible cumulative effect of noise on performance. The findings provide a better insight in the cognitive behavior of people who are exposed to industrial noise. Hence, the study will proceed with the specific noise analysis of single industrial workplaces.


2011 ◽  
Vol 324 ◽  
pp. 441-444 ◽  
Author(s):  
Jalal Jomaah ◽  
Majida Fadlallah ◽  
Gerard Ghibaudo

A review of recent results concerning the low frequency noise in modern CMOS devices is given. The approaches such as the carrier number and the Hooge mobility fluctuations used for the analysis of the noise sources are illustrated through experimental data obtained on advanced CMOS generations. Furthermore, the impact on the electrical noise of the shrinking of CMOS devices in the deep submicron range is also shown.


2020 ◽  
Vol 11 (1) ◽  
pp. 356
Author(s):  
Jonghwan Lee

A new approach for modeling low frequency noise is presented to enable the predictions of noise behavior from negative bias temperature instability (NBTI). The noise model is based on a capture-emission energy (CEE) map describing the probability density function of widely distributed defect capture-emission activation energies. To enlarge the capture-emission energy window and to perform the accurate estimation of the recoverable component of CEE, the Gaussian mixture model (GMM) is applied to the CEE map. This approach provides an efficient identification of noise sources and an in-depth noise analysis under both stationary and cyclo-stationary conditions.


Electronics ◽  
2019 ◽  
Vol 8 (6) ◽  
pp. 696 ◽  
Author(s):  
Jéssica Gutiérrez ◽  
Kaoutar Zeljami ◽  
Tomás Fernández ◽  
Juan Pablo Pascual ◽  
Antonio Tazón

This paper presents and discusses the careful modeling of a Zero Biased Diode, including low-frequency noise sources, providing a global model compatible with both wire bonding and flip-chip attachment techniques. The model is intended to cover from DC up to W-band behavior, and is based on DC, capacitance versus voltage, as well as scattering and power sweep harmonics measurements. Intensive use of 3D EM (ElectroMagnetic) simulation tools, such as HFSSTM, was done to support Zero Biased Diode parasitics modeling and microstrip board modeling. Measurements are compared with simulations and discussed. The models will provide useful support for detector designs in the W-band.


Author(s):  
Michael T. Szedlmayer ◽  
Bryan D. Quay ◽  
Janith Samarasinghe ◽  
Alex De Rosa ◽  
Jong Guen Lee ◽  
...  

An experimental investigation was conducted to determine the air-forced flame response of a five-nozzle, 250 kW, lean premixed gas turbine can combustor. Operating conditions were varied over a range of inlet temperatures, inlet velocities, and equivalence ratios, while the forcing frequency was varied from 100 to 450 Hz with constant normalized velocity fluctuations of approximately 5%. The response of the flame’s rate of heat release to inlet velocity fluctuations is expressed in terms of the phase and gain of a flame transfer function. In addition, chemiluminescence imaging is used to characterize the time-averaged and phase-averaged spatial distribution of the flame’s heat release. The resulting flame transfer functions and chemiluminescence flame images are compared to each other to determine the effects of varying the operating conditions. In addition, they are compared to data obtained from a single-nozzle combustor with the same injector. The forced response of the multi-nozzle flame demonstrates a similar pattern to those obtained in a single-nozzle combustor with the same injector. An exception occurs at high frequency where the multi-nozzle flame responds to a greater degree than the single-nozzle flame. At low frequency the multi-nozzle flame dampens the perturbations while the single-nozzle flame amplifies them. A number of minima and maxima occur at certain frequencies which correspond to the interference of two mechanisms. The frequency of these minima is nearly the same for the single- and multi-nozzle cases. When plotted with respect to Strouhal number instead of frequency there is a degree of collapse that occurs around the first observed minima.


2010 ◽  
Vol 8 ◽  
pp. 129-133
Author(s):  
D. Würfel ◽  
D. Weiler ◽  
B. J. Hosticka ◽  
H. Vogt

Abstract. As state-of-the-art readout circuits short-time integrators in Far Infrared (FIR) uncooled bolometer arrays are commonly used. This paper compares the transfer functions of an ideal continuous-time integrator with that of a real integrator with focus an OTA parameters and noise analysis. Beside the noise sources at the non-inverting input of the OTA special care has to be taken to account for capacitances at the inverting input. The Noise Equivalent Temperature Difference (NETD) as the key parameter for bolometer applications for a real short-time integrator will be derived. As the result it will be shown, that the NETD is 1/f-noise limited.


2020 ◽  
Vol 19 (3-5) ◽  
pp. 191-206
Author(s):  
Trae L Jennette ◽  
Krish K Ahuja

This paper deals with the topic of upper surface blowing noise. Using a model-scale rectangular nozzle of an aspect ratio of 10 and a sharp trailing edge, detailed noise contours were acquired with and without a subsonic jet blowing over a flat surface to determine the noise source location as a function of frequency. Additionally, velocity scaling of the upper surface blowing noise was carried out. It was found that the upper surface blowing increases the noise significantly. This is a result of both the trailing edge noise and turbulence downstream of the trailing edge, referred to as wake noise in the paper. It was found that low-frequency noise with a peak Strouhal number of 0.02 originates from the trailing edge whereas the high-frequency noise with the peak in the vicinity of Strouhal number of 0.2 originates near the nozzle exit. Low frequency (low Strouhal number) follows a velocity scaling corresponding to a dipole source where as the high Strouhal numbers as quadrupole sources. The culmination of these two effects is a cardioid-shaped directivity pattern. On the shielded side, the most dominant noise sources were at the trailing edge and in the near wake. The trailing edge mounting geometry also created anomalous acoustic diffraction indicating that not only is the geometry of the edge itself important, but also all geometry near the trailing edge.


2021 ◽  
Vol 42 (3) ◽  
pp. 442-445
Author(s):  
Dongseok Kwon ◽  
Wonjun Shin ◽  
Jong-Ho Bae ◽  
Suhwan Lim ◽  
Byung-Gook Park ◽  
...  

2005 ◽  
Vol 23 (8) ◽  
pp. 2803-2811 ◽  
Author(s):  
J. B. Cao ◽  
Z. X. Liu ◽  
J. Y. Yang ◽  
C. X. Yian ◽  
Z. G. Wang ◽  
...  

Abstract. LFEW is a low frequency electromagnetic wave detector mounted on TC-2, which can measure the magnetic fluctuation of low frequency electromagnetic waves. The frequency range is 8 Hz to 10 kHz. LFEW comprises a boom-mounted, three-axis search coil magnetometer, a preamplifier and an electronics box that houses a Digital Spectrum Analyzer. LFEW was calibrated at Chambon-la-Forêt in France. The ground calibration results show that the performance of LFEW is similar to that of STAFF on TC-1. The first results of LFEW show that it works normally on board, and that the AC magnetic interference of the satellite platform is very small. In the plasmasphere, LFEW observed the ion cyclotron waves. During the geomagnetic storm on 8 November 2004, LFEW observed a wave burst associated with the oxygen ion cyclotron waves. This observation shows that during geomagnetic storms, the oxygen ions are very active in the inner magnetosphere. Outside the plasmasphere, LFEW observed the chorus on 3 November 2004. LFEW also observed the plasmaspheric hiss and mid-latitude hiss both in the Southern Hemisphere and Northern Hemisphere on 8 November 2004. The hiss in the Southern Hemisphere may be the reflected waves of the hiss in the Northern Hemisphere.


Sign in / Sign up

Export Citation Format

Share Document