Specific Core–Satellite Nanocarriers for Enhanced Intracellular ROS Generation and Synergistic Photodynamic Therapy

2020 ◽  
Vol 12 (5) ◽  
pp. 5403-5412 ◽  
Author(s):  
Tingting Shen ◽  
Xiaoxiao Hu ◽  
Yongchao Liu ◽  
Yu Zhang ◽  
Kun Chen ◽  
...  
2020 ◽  
Vol 49 (33) ◽  
pp. 11583-11590 ◽  
Author(s):  
Zheng-Yin Pan ◽  
Dai-Hong Cai ◽  
Liang He

Two dinuclear organometallic Re(i) complexes increase intracellular ROS levels, causing lysosomal dysfunction and cell apoptosis.


2020 ◽  
pp. 111175
Author(s):  
Tairine Zara Lopes ◽  
Fabio Rogério de Moraes ◽  
Antonio Claudio Tedesco ◽  
Raghuvir Krishnaswamy Arni ◽  
Paula Rahal ◽  
...  

Author(s):  
Edward C. T. Waters ◽  
Friedrich Baark ◽  
Zilin Yu ◽  
Filipa Mota ◽  
Thomas R. Eykyn ◽  
...  

Abstract Purpose To determine the sensitivity of the 18F-radiolabelled dihydroethidine analogue ([18F]DHE) to ROS in a validated ex vivo model of tissue oxidative stress. Procedures The sensitivity of [18F]DHE to various ROS-generating systems was first established in vitro. Then, isolated rat hearts were perfused under constant flow, with contractile function monitored by intraventricular balloon. Cardiac uptake of infused [18F]DHE (50–150 kBq.min−1) was monitored by γ-detection, while ROS generation was invoked by menadione infusion (0, 10, or 50 μm), validated by parallel measures of cardiac oxidative stress. Results [18F]DHE was most sensitive to oxidation by superoxide and hydroxyl radicals. Normalised [18F]DHE uptake was significantly greater in menadione-treated hearts (1.44 ± 0.27) versus control (0.81 ± 0.07) (p < 0.05, n = 4/group), associated with concomitant cardiac contractile dysfunction, glutathione depletion, and PKG1α dimerisation. Conclusion [18F]DHE reports on ROS in a validated model of oxidative stress where perfusion (and tracer delivery) is unlikely to impact its pharmacokinetics.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Urszula K. Komarnicka ◽  
Barbara Pucelik ◽  
Daria Wojtala ◽  
Monika K. Lesiów ◽  
Grażyna Stochel ◽  
...  

Abstract[CuI(2,9-dimethyl-1,10-phenanthroline)P(p-OCH3-Ph)2CH2SarcosineGlycine] (1-MPSG), highly stable in physiological media phosphino copper(I) complex—is proposed herein as a viable alternative to anticancer platinum-based drugs. It is noteworthy that, 1-MPSG significantly and selectively reduced cell viability in a 3D spheroidal model of human lung adenocarcinoma (A549), in comparison with non-cancerous HaCaT cells. Confocal microscopy and an ICP-MS analysis showed that 1-MPSG effectively accumulates inside A549 cells with colocalization in mitochondria and nuclei. A precise cytometric analysis revealed a predominance of apoptosis over the other types of cell death. In the case of HaCaT cells, the overall cytotoxicity was significantly lower, indicating the selective activity of 1-MPSG towards cancer cells. Apoptosis also manifested itself in a decrease in mitochondrial membrane potential along with the activation of caspases-3/9. Moreover, the caspase inhibitor (Z-VAD-FMK) pretreatment led to decreased level of apoptosis (more pronouncedly in A549 cells than in non-cancerous HaCaT cells) and further validated the caspases dependence in 1-MPSG-induced apoptosis. Furthermore, the 1-MPSG complex presumably induces the changes in the cell cycle leading to G2/M phase arrest in a dose-dependent manner. It was also observed that the 1-MPSG mediated intracellular ROS alterations in A549 and HaCaT cells. These results, proved by fluorescence spectroscopy, and flow cytometry, suggest that investigated Cu(I) compound may trigger apoptosis also through ROS generation.


2019 ◽  
Vol 116 (41) ◽  
pp. 20296-20302 ◽  
Author(s):  
Zhixuan Zhou ◽  
Jiangping Liu ◽  
Juanjuan Huang ◽  
Thomas W. Rees ◽  
Yiliang Wang ◽  
...  

Photodynamic therapy (PDT) is a treatment procedure that relies on cytotoxic reactive oxygen species (ROS) generated by the light activation of a photosensitizer. The photophysical and biological properties of photosensitizers are vital for the therapeutic outcome of PDT. In this work a 2D rhomboidal metallacycle and a 3D octahedral metallacage were designed and synthesized via the coordination-driven self-assembly of a Ru(II)-based photosensitizer and complementary Pt(II)-based building blocks. The metallacage showed deep-red luminescence, a large 2-photon absorption cross-section, and highly efficient ROS generation. The metallacage was encapsulated into an amphiphilic block copolymer to form nanoparticles to encourage cell uptake and localization. Upon internalization into cells, the nanoparticles selectively accumulate in the lysosomes, a favorable location for PDT. The nanoparticles are almost nontoxic in the dark, and can efficiently destroy tumor cells via the generation of ROS in the lysosomes under 2-photon near-infrared light irradiation. The superb PDT efficacy of the metallacage-containing nanoparticles was further validated by studies on 3D multicellular spheroids (MCS) and in vivo studies on A549 tumor-bearing mice.


2020 ◽  
Vol 59 (25) ◽  
pp. 9952-9956 ◽  
Author(s):  
Taotao Zhou ◽  
Rong Hu ◽  
Lirong Wang ◽  
Yanping Qiu ◽  
Guiquan Zhang ◽  
...  

Metallomics ◽  
2014 ◽  
Vol 6 (8) ◽  
pp. 1480-1490 ◽  
Author(s):  
Zuandi Luo ◽  
Lianling Yu ◽  
Fang Yang ◽  
Zhennan Zhao ◽  
Bo Yu ◽  
...  

Ruthenium polypyridyl complexes inhibit cancer growth by targeting TrxR and promote the intracellular ROS generation, ultimately triggering mitochondria-mediated cell apoptosis.


2014 ◽  
Vol 13 (12) ◽  
pp. 1793-1803 ◽  
Author(s):  
Xiaolan Feng ◽  
Yi Zhang ◽  
Pan Wang ◽  
Quanhong Liu ◽  
Xiaobing Wang

Glycolytic inhibitors can synergistically enhance the photosensitivity of breast cancer cells by triggering cellular mitochondria- and caspase-dependent cell apoptosis, which was induced by additional ROS generation in combination therapy.


Nanoscale ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 4855-4870
Author(s):  
Qifang Chen ◽  
Xianbin Ma ◽  
Li Xie ◽  
Wenjie Chen ◽  
Zhigang Xu ◽  
...  

MR imaging-guided a synergistic ferroptosis-photodynamic therapy strategy can enhance antitumor effects by accumulating intracellular ROS through the utilization of iron-based nanoparticles.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 3620-3620
Author(s):  
Su-Peng Yeh ◽  
Yu-Chien Chang ◽  
Wen-Jyi Lo ◽  
Min-Lih Huang ◽  
Yang-Sheng Yang ◽  
...  

Abstract Abstract 3620 Background: Deferasirox (DFX) was recently found to have anti-leukemia effect both in vitro and in vivo. DFX can also potently inhibit the generation of intracellular reactive oxygen species (ROS). On the other hand, the generation of ROS by Doxorubicin (DOX) is critical for the cytotoxicity on both leukemia and normal heart cells. It is not known whether combining DFX and DOX will have synergistic or antagonizing effect on leukemic cells. Similarly, it is also unknown whether adding DFX to DOX will have protective effect on normal heart cell. Method: Cells of human acute myeloid leukemia (AML) cell line THP1, mice AML cell line WEHI3, and rat normal heart cell line H9C2 were treated with Doxorubicin 5microM for various duration in the presence of absence of DFX pretreatment (100microM for 10 minutes). Intracellular ROS generation was measured by the detection of 2,7-dichlorodihydrofluorescein (DCF) fluorescence intensity using flow cytometry. Apoptosis was determined by Annexin V-Propidium Iodide staining using flow cytometry. Cytotoxicity was determined by Trypan blue exclusion assay. Results: Although intracellular ROS was reduced, DFX alone induced apoptosis of THP1 (from 3% to 18%) and WEHI3 (from 31% to 49%) AML cells. DOX-induced ROS production was also significantly reduced when THP1, WEHI3, and H9C2 cells were pretreated with DFX (Figure 1a, 1b, 1c respectively). However, the DOX-induced apoptosis of THP1 and WEHI3 AML cells were not antagonized by DFX (Figure 2a). 24 hours after exposure to this physiological dose DOX, all the WEHI3 cells died in both DFX treated or untreated group (figure 2b). More importantly, DFX-pretreated H9C2 heart cells had fewer cell death (3.7%) after exposure to DOX (5microM for 24 hours) compared to non-DFX pretreated cells (8.5%). Conclusions: DFX alone induced apoptosis in two different AML cell lines. DFX also markedly reduced the ROS generation due to DOX treatment. However, DFX did not negatively influence the pro-apoptotic and cytotoxic effect of DOX on these AML cell lines. Interestingly, DFX also markedly reduced the DOX-induced ROS generation and DOX-induced cell death in normal rat heart cell, which might have protective effect on DOX-related cardiomyopathy. We are now using Balb/c-WEHI3 AML mice model to test whether DFX can protect cardiomyocytes from DOX-related damage while maintain the cytotoxic effect of DOX on AML cells. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document