Controlling the Morphology of PEDOT:PSS Blend Films with Pre-Deposition Solution Composition and Deposition Technique

Author(s):  
Luke Heroux ◽  
Josh Moncada ◽  
Mark Dadmun
1996 ◽  
Vol 451 ◽  
Author(s):  
E. A. Meulenkamp ◽  
R. J. J. de Groot ◽  
J. M. L. de Vries

ABSTRACTThe electrodeposition of WO3 thin films from peroxy-tungstate solution is discussed. The emphasis is on the feasibility of this deposition technique for production of electrochromic devices. Therefore, the influence of deposition parameters (solution composition, electrodeposition potential, mass transport, etc.) on the properties of WO3 was studied. Furthermore, it was investigated whether electrodeposition of WO3 offers unique possibilities as compared to WO3 deposition by other techniques.


Author(s):  
A.M. Letsoalo ◽  
M.E. Lee ◽  
E.O. de Neijs

Semiconductor devices require metal contacts for efficient collection of electrical charge. The physics of these metal/semiconductor contacts assumes perfect, abrupt and continuous interfaces between the layers. However, in practice these layers are neither continuous nor abrupt due to poor nucleation conditions and the formation of interfacial layers. The effects of layer thickness, deposition rate and substrate stoichiometry have been previously reported. In this work we will compare the effects of a single deposition technique and multiple depositions on the morphology of indium layers grown on (100) CdTe substrates. The electrical characteristics and specific resistivities of the indium contacts were measured, and their relationships with indium layer morphologies were established.Semi-insulating (100) CdTe samples were cut from Bridgman grown single crystal ingots. The surface of the as-cut slices were mechanically polished using 5μm, 3μm, 1μm and 0,25μm diamond abrasive respectively. This was followed by two minutes immersion in a 5% bromine-methanol solution.


2018 ◽  
Vol 1 (1) ◽  
pp. 26-31 ◽  
Author(s):  
B Babu ◽  
K Mohanraj ◽  
S Chandrasekar ◽  
N Senthil Kumar ◽  
B Mohanbabu

CdHgTe thin films were grown onto glass substrate via the Chemical bath deposition technique. XRD results indicate that a CdHgTe formed with a cubic polycrystalline structure. The crystallinity of CdHgTe thin films is gradually deteriorate with increasing the gamma irradiation. EDS spectrums confirms the presence of Cd, Hg and Te elements. DC electrical conductivity results depicted the conductivity of CdHgTe increase with increasing a gamma ray dosage


1982 ◽  
Vol 47 (7) ◽  
pp. 1780-1786 ◽  
Author(s):  
Rostislav Kudláček ◽  
Jan Lokoč

The effect of gamma pre-irradiation of the mixed nickel-magnesium oxide catalyst on the kinetics of hydrogenation of maleic acid in the liquid phase has been studied. The changes of the hydrogenation rate are compared with the changes of the adsorbed amount of the acid and with the changes of the solution composition, activation energy, and absorbed dose of the ionizing radiation. From this comparison and from the interpretation of the experimental data it can be deduced that two types of centers can be distinguished on the surface of the catalyst under study, namely the sorption centres for the acid and hydrogen and the reaction centres.


2020 ◽  
Vol 1010 ◽  
pp. 638-644
Author(s):  
Mohd Pisal Mohd Hanif ◽  
Abd Jalil Jalilah ◽  
Mohd Fadzil Hanim Anisah ◽  
Arumugam Tilagavathy

Biopolymer-based conductive polymer composites (CPCs) would open up various possibilities in biomedical applications owing to ease of processing, renewable resource and environmentally friendly. However, low mechanical properties are a major issue for their applications. In this study, the investigated the conductivity of chitosan/ PEO blend films filled with carbonized wood fiber (CWF) prepared by solution casting. The effect of CWF was also investigated on tensile properties and their morphological surfaces. The tensile results from different ratios of chitosan/PEO blend films without CWF show that the tensile strength and modulus increased with the increase of chitosan content and chitosan/PEO blend film with 70/30 ratio exhibited the best combination of tensile strength and flexibility. However, a reduction of tensile strength was observed when CWF amount was increased while the modulus of the tensile shows an increment. The film also exhibited higher electrical conductivity as compared to low chitosan ratio. The addition of CWF greatly enhanced the conductivity three-fold from 10-10 to 10-6 S/cm. The electrical conductivity continued to increase with the increase of CWF up to 30wt%. The surface morphology by Scanning Electron Microscopy (SEM) exhibits the absence of phase separation for the blends indicating good miscibility between the PEO and chitosan. Incorporation of CWF into the blend films at 5wt% showed agglomeration. However, the increase of CWF created larger agglomerations that formed conductive pathways resulting in improved conductivity. FTIR analysis suggested that intermolecular interactions occurred between chitosan and PEO while CWF interacts more with the protons of PEO.


Crystals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 237
Author(s):  
M. Abul Hossion ◽  
B. M. Arora

Boron-doped polycrystalline silicon film was synthesized using hot wire chemical vapor deposition technique for possible application in photonics devices. To investigate the effect of substrate, we considered Si/SiO2, glass/ITO/TiO2, Al2O3, and nickel tungsten alloy strip for the growth of polycrystalline silicon films. Scanning electron microscopy, optical reflectance, optical transmittance, X-ray diffraction, and I-V measurements were used to characterize the silicon films. The resistivity of the film was 1.3 × 10−2 Ω-cm for the polycrystalline silicon film, which was suitable for using as a window layer in a solar cell. These films have potential uses in making photodiode and photosensing devices.


Author(s):  
Yasmine Ben Osman ◽  
Jean-Marc Le Meins ◽  
Latifa Bousselmi ◽  
Hanene Akrout ◽  
Dominique Berling

Sign in / Sign up

Export Citation Format

Share Document