Three-Dimensional-Printed Flexible Scaffolds Have Tunable Biomimetic Mechanical Properties for Intervertebral Disc Tissue Engineering

Author(s):  
Samantha L. Marshall ◽  
Timothy D. Jacobsen ◽  
Erik Emsbo ◽  
Archana Murali ◽  
Kevin Anton ◽  
...  
2021 ◽  
Vol 22 (7) ◽  
pp. 3391
Author(s):  
Sylwia Grabska-Zielińska ◽  
Alina Sionkowska ◽  
Ewa Olewnik-Kruszkowska ◽  
Katarzyna Reczyńska ◽  
Elżbieta Pamuła

The aim of this work was to compare physicochemical properties of three dimensional scaffolds based on silk fibroin, collagen and chitosan blends, cross-linked with dialdehyde starch (DAS) and dialdehyde chitosan (DAC). DAS was commercially available, while DAC was obtained by one-step synthesis. Structure and physicochemical properties of the materials were characterized using Fourier transfer infrared spectroscopy with attenuated total reflectance device (FTIR-ATR), swelling behavior and water content measurements, porosity and density observations, scanning electron microscopy imaging (SEM), mechanical properties evaluation and thermogravimetric analysis. Metabolic activity with AlamarBlue assay and live/dead fluorescence staining were performed to evaluate the cytocompatibility of the obtained materials with MG-63 osteoblast-like cells. The results showed that the properties of the scaffolds based on silk fibroin, collagen and chitosan can be modified by chemical cross-linking with DAS and DAC. It was found that DAS and DAC have different influence on the properties of biopolymeric scaffolds. Materials cross-linked with DAS were characterized by higher swelling ability (~4000% for DAS cross-linked materials; ~2500% for DAC cross-linked materials), they had lower density (Coll/CTS/30SF scaffold cross-linked with DAS: 21.8 ± 2.4 g/cm3; cross-linked with DAC: 14.6 ± 0.7 g/cm3) and lower mechanical properties (maximum deformation for DAC cross-linked scaffolds was about 69%; for DAS cross-linked scaffolds it was in the range of 12.67 ± 1.51% and 19.83 ± 1.30%) in comparison to materials cross-linked with DAC. Additionally, scaffolds cross-linked with DAS exhibited higher biocompatibility than those cross-linked with DAC. However, the obtained results showed that both types of scaffolds can provide the support required in regenerative medicine and tissue engineering. The scaffolds presented in the present work can be potentially used in bone tissue engineering to facilitate healing of small bone defects.


2010 ◽  
Vol 20 ◽  
pp. 134-148 ◽  
Author(s):  
L Calderon ◽  
◽  
E Collin ◽  
D Velasco-Bayon ◽  
M Murphy ◽  
...  

2005 ◽  
Vol 288-289 ◽  
pp. 437-440 ◽  
Author(s):  
Guo Qiang Chen ◽  
Qiong Wu ◽  
Ya Wu Wang ◽  
Zhong Zheng

Poly(hydroxybutyrate-co-hydroxyhexanoate) (PHBHHx) has improved mechanical properties over the existing PHA and our results have shown that PHBHHx has better biocompatibility over polyhydroxybutyrate (PHB) and polylactic acid (PLA). Surface treatment with lipases dramatically changed the material surface properties and increased the biocompatibility of the PHBHHx. PHBHHx and its PHB blends had been used to make three dimensional structures and it has been found that cartilage, osteoblast, and fibroblasts all showed strong growth on the PHBHHx scaffolds. The growth was much better compared with PLA. The molecular studies also showed that mRNA encoding cartilages were strongly expressed when cartilage cells were grown on the PHBHHx. As PHBHHx has strong mechanical properties, easily processible and biodegradable, this material can be used to develop a new class of tissue engineering materials.


2019 ◽  
Vol 9 (17) ◽  
pp. 3540 ◽  
Author(s):  
Ferdows Afghah ◽  
Caner Dikyol ◽  
Mine Altunbek ◽  
Bahattin Koc

Melt electrospinning writing has been emerged as a promising technique in the field of tissue engineering, with the capability of fabricating controllable and highly ordered complex three-dimensional geometries from a wide range of polymers. This three-dimensional (3D) printing method can be used to fabricate scaffolds biomimicking extracellular matrix of replaced tissue with the required mechanical properties. However, controlled and homogeneous cell attachment on melt electrospun fibers is a challenge. The combination of melt electrospinning writing with other tissue engineering approaches, called hybrid biomanufacturing, has introduced new perspectives and increased its potential applications in tissue engineering. In this review, principles and key parameters, challenges, and opportunities of melt electrospinning writing, and particularly, recent approaches and materials in this field are introduced. Subsequently, hybrid biomanufacturing strategies are presented for improved biological and mechanical properties of the manufactured porous structures. An overview of the possible hybrid setups and applications, future perspective of hybrid processes, guidelines, and opportunities in different areas of tissue/organ engineering are also highlighted.


Author(s):  
Andrew P. Breidenbach ◽  
Nathaniel A. Dyment ◽  
Yinhui Lu ◽  
Jason T. Shearn ◽  
David W. Rowe ◽  
...  

Tendon and ligament injuries account for one-third of all musculoskeletal injuries [1]. Collagen fibrils in these mechanosensitive tissues transmit forces to mobilize and stabilize joint movement. Donor tissues used to repair these tissues often lack the mechanical properties of the tissue they are replacing. One promising alternative using tissue engineering combines stem/progenitor cells in three-dimensional tissue engineered constructs (TECs).


Polymers ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 457 ◽  
Author(s):  
Rodrigo Urruela-Barrios ◽  
Erick Ramírez-Cedillo ◽  
A. Díaz de León ◽  
Alejandro Alvarez ◽  
Wendy Ortega-Lara

Three-dimensional (3D) printing technologies have become an attractive manufacturing process to fabricate scaffolds in tissue engineering. Recent research has focused on the fabrication of alginate complex shaped structures that closely mimic biological organs or tissues. Alginates can be effectively manufactured into porous three-dimensional networks for tissue engineering applications. However, the structure, mechanical properties, and shape fidelity of 3D-printed alginate hydrogels used for preparing tissue-engineered scaffolds is difficult to control. In this work, the use of alginate/gelatin hydrogels reinforced with TiO2 and β-tricalcium phosphate was studied to tailor the mechanical properties of 3D-printed hydrogels. The hydrogels reinforced with TiO2 and β-TCP showed enhanced mechanical properties up to 20 MPa of elastic modulus. Furthermore, the pores of the crosslinked printed structures were measured with an average pore size of 200 μm. Additionally, it was found that as more layers of the design were printed, there was an increase of the line width of the bottom layers due to its viscous deformation. Shrinkage of the design when the hydrogel is crosslinked and freeze dried was also measured and found to be up to 27% from the printed design. Overall, the proposed approach enabled fabrication of 3D-printed alginate scaffolds with adequate physical properties for tissue engineering applications.


2016 ◽  
Vol 46 ◽  
pp. 29-40 ◽  
Author(s):  
Simon Wan ◽  
Samantha Borland ◽  
Stephen M. Richardson ◽  
Catherine L.R. Merry ◽  
Alberto Saiani ◽  
...  

2010 ◽  
Vol 222 (1) ◽  
pp. 23-32 ◽  
Author(s):  
Stephen M. Richardson ◽  
Judith A. Hoyland ◽  
Reza Mobasheri ◽  
Constanze Csaki ◽  
Mehdi Shakibaei ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document