What is the Effect of Propolis Extracts against Pathogenic Microorganisms and on Potentially Probiotic Strains of Lacticaseibacillus and Limosilactobacillus?

Author(s):  
Layse Ferreira de Brito ◽  
Fernando Bergara Pereira ◽  
Maria Cristina Lorenzon ◽  
Rosane Nora Castro ◽  
Roberto Laureano Melo ◽  
...  
Planta Medica ◽  
2011 ◽  
Vol 77 (12) ◽  
Author(s):  
VR Santos ◽  
VA Noronha ◽  
JC Silva ◽  
FF Silva ◽  
TF Machado ◽  
...  

2014 ◽  
Vol 1 (1) ◽  
pp. 31-36 ◽  
Author(s):  
O. Zhukorskiy ◽  
O. Gulay ◽  
V. Gulay ◽  
N. Tkachuk

Aim. To determine the response of the populations of Erysipelothrix rhusiopathiae and Leptospira interrogans pathogenic microorganisms to the impact of broadleaf cattail (Thypha latifolia) root diffusates. Methods. Aqueous solutions of T. latifolia root diffusates were sterilized by vacuum fi ltration through the fi lters with 0.2-micron pore diameter. The experimental samples contained cattail secretions, sterile water, and cultures of E. rhusiopathiae or L. interrogans. The same amount of sterile water, as in the experimental samples, was used for the purpose of control, and the same quantity of microbial cultures was added in it. After exposure, the density of cells in the experimental and control samples was determined. Results. Root diffusates of T. latifolia caused an increase in cell density in the populations of E. rhusiopathiae throughout the whole range of the studied dilutions (1:10–1:10000). In the populations of the 6 studied serological variants of L. interrogans spirochetes (pomona, grippotyphosa, copenhageni, kabura, tarassovi, canicola), the action of broadleaf cattail root diffusates caused the decrease in cell density. A stimulatory effect was marked in the experimental samples of the pollonica serological variant of leptospira. Conclusions. The populations of E. rhusiopathiae and L. interrogans pathogenic microorganisms respond to the allelopathic effect of Thypha latifolia by changing the cell density. The obtained results provide the background to assume that broadleaf cattail thickets create favorable conditions for the existence of E. rhusiopathiae pathogen bacteria. The reduced cell density of L. interrogans in the experimental samples compared to the control samples observed under the infl uence of T. latifolia root diffusates suggests that reservoirs with broadleaf cattail thickets are marked by the unfavorable conditions for the existence of pathogenic leptospira (except L. pollonica).


Author(s):  
Е.Н. Ильина ◽  
Е.И. Олехнович ◽  
А.В. Павленко

С течением времени подходы к изучению резистентности к антибиотикам трансформировались от сосредоточения на выделенных в виде чистой культуры патогенных микроорганизмах к исследованию резистентности на уровне микробных сообществ, составляющих биотопы человека и окружающей среды. По мере того, как продвигается изучение устойчивости к антибиотикам, возникает необходимость использования комплексного подхода для улучшения информирования мирового сообщества о наблюдаемых тенденциях в этой области. Все более очевидным становится то, что, хотя не все гены резистентности могут географически и филогенетически распространяться, угроза, которую они представляют, действительно серьезная и требует комплексных междисциплинарных исследований. В настоящее время резистентность к антибиотикам среди патогенов человека стала основной угрозой в современной медицине, и существует значительный интерес к определению ниши, в которых бактерии могут получить гены антибиотикорезистентности, и механизмов их передачи. В данном обзоре мы рассматриваем проблемы, возникшие на фоне широкого использования человечеством антибактериальных препаратов, в свете формирования микрофлорой кишечника резервуара генов резистентности. Over the time, studies of antibiotic resistance have transformed from focusing on pathogenic microorganisms isolated as a pure culture to analysis of resistance at the level of microbial communities that constitute human and environmental biotopes. Advancing studies of antibiotic resistance require an integrated approach to enhance availability of information about observed tendencies in this field to the global community. It becomes increasingly obvious that, even though not all resistance genes can geographically and phylogenetically spread, the threat they pose is indeed serious and requires complex interdisciplinary research. Currently, the antibiotic resistance of human pathogens has become a challenge to modern medicine, which is now focusing on determining a potential source for bacterial genes of drug resistance and mechanisms for the gene transmission. In this review, we discussed problems generated by the widespread use of antibacterial drugs in the light of forming a reservoir of resistance genes by gut microflora.


2018 ◽  
Vol 3 (1) ◽  
Author(s):  
Nusa Idaman Said

Water disinfection means the removal, deactivation or killing of pathogenic microorganisms. Microorganisms are destroyed or deactivated, resulting in termination of growth and reproduction. When microorganisms are not removed from drinking water, drinking water usage will cause people to fall ill. Chemical inactivation of microbiological contamination in natural or untreated water is usually one of the final steps to reduce pathogenic microorganisms in drinking water. Combinations of water purification steps (oxidation, coagulation, settling, disinfection, and filtration) cause (drinking) water to be safe after production. As an extra measure many countries apply a second disinfection step at the end of the water purification process, in order to protect the water from microbiological contamination in the water distribution system. Usually one uses a different kind of disinfectant from the one earlier in the process, during this disinfection process. The secondary disinfection makes sure that bacteria will not multiply in the water during distribution. This paper describes several technique of disinfection process for drinking water treatment. Disinfection can be attained by means of physical or chemical disinfectants. The agents also remove organic contaminants from water, which serve as nutrients or shelters for microorganisms. Disinfectants should not only kill microorganisms. Disinfectants must also have a residual effect, which means that they remain active in the water after disinfection. For chemical disinfection of water the following disinfectants can be used such as Chlorine (Cl2),  Hypo chlorite (OCl-), Chloramines, Chlorine dioxide (ClO2), Ozone (O3), Hydrogen peroxide etch. For physical disinfection of water the following disinfectants can be used is Ultraviolet light (UV). Every technique has its specific advantages and and disadvantages its own application area sucs as environmentally friendly, disinfection byproducts, effectivity, investment, operational costs etc. Kata Kunci : Disinfeksi, bakteria, virus, air minum, khlor, hip khlorit, khloramine, khlor dioksida, ozon, UV.


Author(s):  
Malireddy S Reddy

The worldwide popularity of Dr. M.S. Reddy’s Multiple Mixed Strain Probiotic Therapy to treat or prevent the hospital acquired infections (nosocomial infections) arose a great interest in the medical community around the world (Reddy and Reddy, 2016; 2017). The following questions were raised on this subject: Does Multiple Mixed Strain Probiotics directly inhibit the pathogenic bacteria (C. diff) in the gastrointestinal tract or indirectly through modulation of the host immune system or both? To be more specific, what is the exact and/or hypothetical mechanism at molecular level behind the breakthrough discovery of Dr. M.S. Reddy’s Multiple Mixed Strain Probiotic Therapy?  To answer these questions, the specific immunomodulation regulatory functions of the individual Probiotic strains (on host) have beenresearched, investigated andoutlined in this article.  A detailed explanation(s) and hypotheses have been proposed outlining the possible cumulativedirect bacteriological and indirect immunomodulatory effects (at the molecular level) of the Multiple Mixed Strain Probiotics used in Dr. M.S. Reddy’s Multiple Mixed Strain Probiotic Therapy to successfully treat C. diff infection.  A detailed scientific and research attempts were made to correlate the Probiotic induced immune activities in relation to the reduction of the symptoms associated with the hospital acquired Clostridium difficile infection during and after the Multiple Mixed Strain Probioitc Therapy.  Results of the clinical trials, microbiological tests on feces, and the clinical blood tests significantly revealed that the reasons for the success of Dr. Reddy’s Multiple Mixed Strain Probiotic Therapy are multifold. Presumably, it is predominantly due to the immunomodulatory effect they have exerted on the host immune system along with the direct inhibition of C. diff bacteria by multiple Probiotics, due to the production of bacteriocins, lactic acid and nutritional competency.In addition, the size of the individual cells of the Probiotic strains in the Multiple Mixed Strain Probiotics and their significant effect on immunomodulation has been thoroughly discussed. Results clearly proved that if Probiotics are absent in the GI tract during C. diff infection, the chances of patient survival is zero.  This is because of the excess immune stimulation and incurable damage to the epithelial cell barrier of the gastrointestinal tract caused by C. diff bacteria.  The results also revealed, without any doubt, as of to-datethe latest discovery of Dr. M.S. Reddy’s Multiple Mixed Strain Probiotic Therapy is the best way to cure the deadly hospital acquired infections affecting millions of people around the world, with high degree of mortality.  This has been attested by several practicng medical professionals and scientists around the world (Reddy and Reddy, 2017).


Vsyo o myase ◽  
2019 ◽  
pp. 42-45 ◽  
Author(s):  
E.V. Zaiko ◽  
◽  
A.A. Panchenko ◽  
D.M. Satabaeva ◽  
D.S. Bataeva ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document