Molecular Property-Tailored Soy Protein Extraction Process Using a Deep Eutectic Solvent

Author(s):  
Qingsong Chen ◽  
Lingxiao Chaihu ◽  
Xiaopeng Yao ◽  
Xiwang Cao ◽  
Wentao Bi ◽  
...  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Jianghao Du ◽  
Zhanyun Zhu ◽  
Junchang Yang ◽  
Jia Wang ◽  
Xiaotong Jiang

AbstractIn this paper, a comparative study was conducted on the extraction effects of six agents for collagen-based mural painting binders. These agents were used to extract the residual proteins in the non-aged and thermal aged samples. The protein extraction efficiencies of different extracting agents were quantitatively determined by bicinchoninic acid (BCA) method, and then processed by multivariate analysis of variance (MANOVA). The impact of the extraction process on the protein structure was characterized by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), ultraviolet absorption spectrum (UV) and circular dichroism (CD). The results showed that, for both non-aged and aged samples, the extraction efficiency of 2 M guanidine hydrochloride (GuHCl) was significantly higher than the other five agents, with less damage to the protein structure during the extraction process.


2012 ◽  
Vol 545 ◽  
pp. 240-244 ◽  
Author(s):  
Siti Hamidah Mohd-Setapar ◽  
Siti Norazimah Mohamad-Aziz ◽  
N.H. Harun ◽  
S.H. Hussin

Reverse micelle extraction has received considerable attention in recent years due to its ability to selectively solubilise solutes from an aqueous phase, and in the case of biomolecules to maintain their biological activities. The apparent success of research on protein extraction from the aqueous phase using reverse micelle provides motivation to study the solubilisation of antibiotic. The objective of this study is to investigate the extraction of antibiotic (penicillin G is chosen as model antibiotic) from aqueous solution (forward extraction) and from the reverse micelle to a new aqueous solution (backward extraction). Sodium di(2-ethylhexyl)sulfosuccinate (AOT) is chosen as the surfactant and isooctane as the organic solvent. The UV-Vis spectrophotometer is used to determine the mass of penicillin G in solution after the extraction process. The extraction is expected to be influenced by the initial penicillin G concentration, the salt type and concentration in the aqueous phase, pH, and surfactant concentration. It is expected that as penicillin is an interfacially active compound that will interacts with AOT surfactant, the interfacial association will be dependent on both pH and surfactant concentration.


Molecules ◽  
2020 ◽  
Vol 25 (22) ◽  
pp. 5456
Author(s):  
Hongkun Xue ◽  
Jiaqi Tan ◽  
Qian Li ◽  
Jintian Tang ◽  
Xu Cai

Blueberry wine residues produced during the wine-brewing process contain abundant anthocyanins and other bioactive compounds. To extract anthocyanins from blueberry wine residues more efficiently, a novel procedure of ultrasound-assisted deep eutectic solvent extraction (UADESE) was proposed in this work. The extraction process was optimized by response surface methodology coupled with genetic algorithm. The optimum extraction parameters to achieve the highest yield of anthocyanins (9.32 ± 0.08 mg/g) from blueberry wine residues by UADESE were obtained at water content of 29%, ultrasonic power of 380 W, extraction temperature of 55 °C, and extraction time of 40 min. The AB-8 macroporous resin combined with Sephadex LH-20 techniques was used to purify the crude extract (CE) obtained under optimum extraction conditions and analyze the anthocyanins composition by HPLC-ESI-MS/MS. The cyanidin-3-rutinoside with purity of 92.81% was obtained. The HepG2 antitumor activity of CE was better than that of the purified anthocyanins component. Moreover, CE could increase the intracellular reactive oxygen species levels and the apoptosis, and arrest HepG2 cells in the S phases. These findings provided an effective and feasible method for anthocyanins extraction, and reduced the environmental burden of this waste.


Antioxidants ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 586 ◽  
Author(s):  
Achillia Lakka ◽  
Spyros Grigorakis ◽  
Ioanna Karageorgou ◽  
Georgia Batra ◽  
Olga Kaltsa ◽  
...  

The current investigation was undertaken to examine saffron processing waste (SPW) as a bioresource, which could be valorized to produce extracts rich in antioxidant polyphenols, using a green, natural deep eutectic solvent (DES). Initially, there was an appraisal of the molar ratio of hydrogen bond donor/hydrogen bond acceptor in order to come up with the most efficient DES composed of L-lactic acid/glycine (5:1). The following step was the optimization of the extraction process using response surface methodology. The optimal conditions thus determined were a DES concentration of 55% (w/v), a liquid-to-solid ratio of 60 mL g−1, and a stirring speed of 800 rounds per minute. Under these conditions, the extraction yield in total polyphenols achieved was 132.43 ± 10.63 mg gallic acid equivalents per g of dry mass. The temperature assay performed within a range of 23 to 80 °C, suggested that extracts displayed maximum yield and antioxidant activity at 50–60 °C. Liquid chromatography-mass spectrometry analysis of the SPW extract obtained under optimal conditions showed that the predominant flavonol was kaempferol 3-O-sophoroside and the major anthocyanin delphinidin 3,5-di-O-glucoside. The results indicated that SPW extraction with the DES used is a green and efficient methodology and may afford extracts rich flavonols and anthocyanins, which are considered to be powerful antioxidants.


2019 ◽  
Vol 39 (4) ◽  
Author(s):  
Álan C. Maracahipes ◽  
Gabriel B. Taveira ◽  
Erica O. Mello ◽  
André O. Carvalho ◽  
Rosana Rodrigues ◽  
...  

Abstract There are several phytosanitary problems that have been causing serious damage to the Capsicum crops, including anthracnose. Upon attack by certain pathogens, various protein molecules are produced, which are known as proteins related to pathogenesis (PR proteins), including antimicrobial peptides such as protease inhibitors, defensins and lipid transfer proteins (LTPs). The objective of this work is to identify antimicrobial proteins and/or peptides of two genotypes from Capsicum annuum fruits infected with Colletotrichum gloeosporioides. The fungus was inoculated into Capsicum fruits by the deposition of a spore suspension (106 conidia ml−1), and after 24 and 48 h intervals, the fruits were removed from the humid chamber and subjected to a protein extraction process. Protein analysis of the extracts was performed by tricine gel electrophoresis and Western blotting. The distinctive bands between genotypes in the electrophoresis profiles were subjected to mass spectrometry sequencing. Trypsin inhibition assays, reverse zymographic detection of protease inhibition and β-1,3-glucanase activity assays were also performed and extracts were also tested for their ability to inhibit the growth of C. gloeosporioides fungi ‘in vitro’. There were several low molecular weight proteins in all treated samples, and some treatments in which antimicrobial peptides such as defensin, lipid transfer protein (LTP) and protease inhibitor have been identified. It was shown that the green fruits are more responsive to infection, showing the production of antimicrobial peptides in response to injury and inoculation of the fungus, what did not occur in ripe fruits under any treatment.


1992 ◽  
Vol 6 (5) ◽  
pp. 423-428 ◽  
Author(s):  
M. Hentsch ◽  
P. Menoud ◽  
E. Flaschel ◽  
A. Renken

2016 ◽  
Vol 3 (2) ◽  
pp. 33-37
Author(s):  
Martti Tamm ◽  
◽  
Urmas Sannik ◽  
Mart Objartel ◽  
Larissa Porõvkina

2019 ◽  
Vol 10 (1) ◽  
pp. 220 ◽  
Author(s):  
Achillia Lakka ◽  
Spyros Grigorakis ◽  
Olga Kaltsa ◽  
Ioanna Karageorgou ◽  
Georgia Batra ◽  
...  

Moringa oleifera L. leaves are a plant tissue particularly rich in polyphenolic phytochemicals with significant bioactivities, and there has been significant recent interest for the production of extracts enriched in these substances. The current investigation is aimed at establishing a green extraction process, using a novel eco-friendly natural deep eutectic solvent, composed of glycerol and nicotinamide. Furthermore, sample ultrasonication prior to batch stirred-tank extraction was studied to examine its usefulness as a pretreatment step. Optimization of the extraction process through response surface methodology showed that the maximum total polyphenol yield (82.87 ± 4.28 mg gallic acid equivalents g−1 dry mass) could be achieved after a 30 min ultrasonication pretreatment, but the difference with the yield obtained from the non-pretreated sample was statistically non-significant (p < 0.05). Extraction kinetics revealed that the activation energy for the ultrasonication-pretreated samples was more energy-demanding, a fact attributed to phenomena pertaining to washing of the readily extracted polyphenols during pretreatment. Liquid-chromatography-diode array-mass spectrometry showed that ultrasonication pretreatment may have a limited positive effect on polyphenol extractability, but the overall polyphenolic profile was identical for the ultrasonication-pretreated and non-pretreated samples.


Author(s):  
Yizhao Shen ◽  
Ranithri Abeynayake ◽  
Xin Sun ◽  
Tao Ran ◽  
Jianguo Li ◽  
...  

Abstract Background This study was conducted to evaluate the feed nutritional value of brewers’ spent grain (BSG) residue resulting from protease aided protein removal. The nutritional value was measured as nutrient content, gas production, nutrient digestibility and fermentation characteristics in batch culture. Results Protein extraction process decreased content of crude protein but concentrated the neutral detergent fibre (NDF) and ferulic acid in BSG residue. The changes in the chemical composition of BSG residue varied with enzyme and enzyme dosage. Digestibility of dry matter (DMD) and NDF of residue differed among proteases. Increasing alcalase dosage linearly decreased DMD, whereas, the DMD linearly increased as everlase or flavourzyme dosage increased. Compared with BSG, the DMD, gas production and fermentation acid concentration of BSG residues were lower, whereas NDF digestibility was higher. Conclusions The substantially increased NDF content and improved in vitro NDF digestibility due to protease hydrolysis suggest that BSG residue can be potentially exploited as a viable fibre source for ruminant feeding.


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3850
Author(s):  
Na Zheng ◽  
Yongfei Ming ◽  
Jianzhi Chu ◽  
Shude Yang ◽  
Guochao Wu ◽  
...  

Sanghuangporus baumii, is a widely used medicinal fungus. The polyphenols extracted from this fungus exert antioxidant, anti-inflammatory, and hypoglycemic effects. In this study, polyphenols from the fruiting bodies of S. baumii were obtained using the deep eutectic solvent (DES) extraction method. The factors affecting the extraction yield were investigated at different conditions. Based on the results from single-factor experiments, response surface methodology was used to optimize the extraction conditions. The scavenging ability of the polyphenols on •OH, DPPH, and ABTS+ was determined. The results showed that the DES system composed of choline chloride and malic acid had the best extraction yield (6.37 mg/g). The optimal extraction parameters for response surface methodology were as follows: 42 min, 58 ℃, 1:34 solid–liquid (mg/mL), and water content of 39%. Under these conditions, the yield of polyphenols was the highest (12.58 mg/g). At 0.30 mg/mL, the scavenging ability of the polyphenols on •OH, DPPH, and ABTS+ was 95.71%, 91.08%, and 85.52%, respectively. Thus, the method using DES was more effective than the conventional method of extracting phenolic compounds from the fruiting bodies of S. baumii. Moreover, the extracted polyphenols exhibited potent antioxidant activity.


Sign in / Sign up

Export Citation Format

Share Document