The Dielectric Properties of Acetylenic Compounds. X. Equipment for Measuring Dielectric Constants of Gases. The Polarity of Gaseous Monoalkyl Acetylenes

1938 ◽  
Vol 60 (9) ◽  
pp. 2115-2119 ◽  
Author(s):  
F. J. Krieger ◽  
H. H. Wenzke
2021 ◽  
Vol 5 (6) ◽  
pp. 141
Author(s):  
Imen Elloumi ◽  
Ahmed Koubaa ◽  
Wassim Kharrat ◽  
Chedly Bradai ◽  
Ahmed Elloumi

The characterization of the dielectric properties of wood–polymer composites (WPCs) is essential to understand their interaction with electromagnetic fields and evaluate their potential use for new applications. Thus, dielectric spectroscopy monitored the evolution of the dielectric properties of WPCs over a wide frequency range of 1 MHz to 1 GHz. WPCs were prepared using mixtures of different proportions (40%, 50%, and 60%) of wood and bark fibers from various species, high-density polyethylene, and maleated polyethylene (3%) by a two-step process, extrusion and compression molding. Results indicated that wood fibers modify the resistivity of polyethylene at low frequencies but have no effect at microwave frequencies. Increasing the fiber content increases the composites’ dielectric properties. The fibers’ cellulose content explains the variation in the dielectric properties of composites reinforced with fibers from different wood species. Indeed, composites with high cellulose content show higher dielectric constants.


2001 ◽  
Vol 16 (7) ◽  
pp. 2057-2063 ◽  
Author(s):  
Jiin-Jyh Shyu ◽  
Hsin-Wei Peng

The crystallization and dielectric properties of SrO–BaO–Nb2O5–GeO2 glass–ceramics were investigated. One- and two-stage heat-treatment methods were used to convert the parent glass to glass–ceramics. Strontium barium niobate (SBN) with a tetragonal tungsten-bronze structure formed as the major crystalline phase. When the crystallizing temperature/time was increased, the secondary crystalline BaGe2O5 phase coexisted with SBN. BaGe2O5 formed as a surface layer grown from the surface into the interior of the sample. The dendritic morphology of SBN crystals was examined. The glass–ceramics crystallized by two-stage heat treatment have higher dielectric constants than those crystallized by one-stage heat treatment. The highest dielectric constant that was obtained in the present glass–ceramics was 320. The glass–ceramics showed relaxor-type dielectric behavior.


2007 ◽  
Vol 124-126 ◽  
pp. 177-180
Author(s):  
Jang Sik Lee ◽  
Q.X. Jia

To investigate the anisotropic dielectric properties of layer-structured bismuth-based ferroelectrics along different crystal directions, we fabricate devices along different crystal orientations using highly c-axis oriented Bi3.25La0.75Ti3O12 (BLT) thin films on (001) LaAlO3 (LAO) substrates. Experimental results have shown that the dielectric properties of the BLT films are highly anisotropic along different crystal directions. The dielectric constants (1MHz at 300 K) are 358 and 160 along [100] and [110], respectively. Dielectric nonlinearity is also detected along these crystal directions. On the other hand, a much smaller dielectric constant and no detectable dielectric nonlinearity in a field range of 0-200 kV/cm are observed for films along [001] when c-axis oriented SRO is used as the bottom electrode.


1990 ◽  
Vol 189 ◽  
Author(s):  
Johanna B. Salsman

ABSTRACTAs part of the research effort on investigating the effects of microwave energy absorption on the chemical and physical properties of minerals and ores, the Bureau of Mines, Tuscaloosa Research Center has developed a technique of measuring the dielectric constant and loss tangent of minerals at the common microwave heating frequencies. The objective was to establish a reliable data base to aid in predicting the effects of microwave heating on minerals.In this phase of microwave research, the Bureau measured the dielectric properties of powdered minerals with medium to high electrical conductivities (a ≥ 0.02 Mho/m) in the frequency range of 300 MHz to 3 GHz using an open-ended coaxial line probe connected to an HP 8753A network analyzer. Since the minerals were prepared as powders, techniques were used to relate the measured dielectric properties of the powdered minerals to the dielectric properties of the mineral at Its theoretical or natural density. Also, these measurements were performed as a function of temperature, from 25° to 325° C.The measured values of the dielectric constants and loss tangents using this method were accurate within ±5 percent. This report describes the method of measurement and discusses the results of the Bureau's investigations into dielectric properties of minerals.


2018 ◽  
Vol 9 (21) ◽  
pp. 2913-2925 ◽  
Author(s):  
Ming Zeng ◽  
Jiangbing Chen ◽  
Qingyu Xu ◽  
Yiwan Huang ◽  
Zijian Feng ◽  
...  

The effects of the reaction solvent on the preparation, polymerization kinetics, and high-frequency dielectric properties of aliphatic main-chain benzoxazine copolymers were investigated.


Author(s):  
L.A. Morozova ◽  
S.V. Savel’ev

For the first time, an ultra-high-sensitivity method for measuring radio-thermal radiation was developed and used in practice in order to establish the difference in the physical properties of aqueous solutions of substances in the millimeter region of the spectrum. The method is used to study the dynamics of the dielectric properties of aqueous solutions depending on the composition of the base substance and its concentration. The dynamics of dielectric properties establishes a one-to-one correspondence between the number and concentration of ions of the dissolved basic substance contained in water and the number of water molecules involved in cooperative interaction, which gives a consistent microscopic picture of ion-water cooperative interactions in the studied aqueous solutions of K2SO4 and Cs2SO4. The density of water molecules perturbed by the ions of the base substance contained in the hydration shell at normal concentrations is proportional to the number of ions, while the transition to weaker solutions leads to the creation of multilayer hydration shells. This means that the number of perturbed water molecules, depending on the number of ions, increases according to a law different from linear. In accordance with the experimental data, the values of the absorption coefficients of aqueous solutions were determined in a wide range of concentrations for alkali metal sulfates. It is noted that alkali metal sulfates have physical properties that generalize the dynamics of dielectric constants depending on the concentration of the base substance. A monotonic increase in the values of the absorption coefficients of solutions with a decrease in the concentration of basic substances in the region of high dilutions was established with individual dynamics for each basic substance, reflecting the total hydration changes in salt solutions. Research has shown that the proposed method for measuring radio-thermal radiation fixes a significant difference in the values of the dielectric constants of aqueous solutions at high dilutions from their values for water.


2011 ◽  
Vol 2011 (CICMT) ◽  
pp. 000072-000077
Author(s):  
Minoru Osada ◽  
Takayoshi Sasaki

We report on a bottom-up manufacturing for high-k dielectric films using a novel nanomaterial, namely, a perovskite nanosheet (LaNb2O7) derived from a layered perovskite by exfoliation. Solution-based layer-by-layer assembly of perovskite nanosheets is effective for room-temperature fabrication of high-k nanocapacitors, which are directly assembled on a SrRuO3 bottom electrode with an atomically sharp interface. These nanocapacitors exhibit high dielectric constants (k > 50) for thickness down to 5 nm while eliminating problems resulting from the size effect. We also investigate dielectric properties of perovskite nanosheets with different compositions (LaNb2O7, La0.95Eu0.05Nb2O7, and Eu0.56Ta2O7) in order to study the influence of A- and B-site modifications on dielectric properties.


2016 ◽  
Vol 29 (10) ◽  
pp. 1175-1184 ◽  
Author(s):  
Yangxue Lei ◽  
Mingzhen Xu ◽  
Mingli Jiang ◽  
Yumin Huang ◽  
Xiaobo Liu

The curing behavior and dielectric properties of cyanate ester/epoxy (EP) with a latent initiator imidazole was investigated as a function of blend composition. Differential scanning calorimetry (DSC) was used to investigate the dynamic cure behavior of the blends. Multiheating rate DSC, peak fitting, and iso-conversion method were applied to analyze the curing kinetic parameters. Two distinct peaks were fitted from the dynamic DSC curve and the activation energies of each reaction varied with the increase of curing degrees. Fourier transform infrared spectra revealed that several reactions coexisted during the curing processes of cyanate and EP, resulting in the coexistence of the polymers and copolymers in the final composites. The dielectric properties of the composites were studied and the phenomenon that the dielectric constants for all of the composites are independent of frequency was observed. The thermal decomposition characteristics of the blends were investigated using thermogravimetric analysis. By increasing the content of EP, the thermal properties of the cured blends were improved to a small extent, while the char yield markedly decreased.


2008 ◽  
Vol 368-372 ◽  
pp. 1817-1819
Author(s):  
Cui Hua Zhao ◽  
Bo Ping Zhang ◽  
Yong Liu ◽  
Song Jie Li

LixTixNi1-2xO (x =0, 10 and 20 at. %) thin films with 200 nm in thickness were deposited on Pt/Ti/SiO2/Si (100) by a sol-gel spin-coating method. All samples have a uniform microstructure. The grain sizes grew from 100 nm to 300 nm by co-doping Li and Ti. The LiTiNiO thin films consist of NiO, NiTiO3 and Li2NiO2, while the Li-free thin films consist of NiO, NiTiO3 and NiTi0.99O3. The dielectric properties of the LiTiNiO thin films improved obviously by co-doping Li and Ti, but excess Li increases the amount of Li2NiO2 phase and decreases the dielectric properties. The dielectric constants at 100 Hz for the Li0.1Ti0.1Ni0.8O and Li0.2Ti0.2Ni0.6O thin films are 506 and 388 respectively. Appropriate co-doping contents of Li and Ti are important to obtain a high dielectric property.


Sign in / Sign up

Export Citation Format

Share Document