Role of Stimuli-Sensitive Polymers in Protein Refolding:  α-Amylase and CcdB (Controller of Cell Division or Death B) as Model Proteins†

Langmuir ◽  
2007 ◽  
Vol 23 (1) ◽  
pp. 70-75 ◽  
Author(s):  
Kalyani Mondal ◽  
Smita Raghava ◽  
Bipasha Barua ◽  
Raghavan Varadarajan ◽  
Munishwar N. Gupta
2021 ◽  
Vol 22 (10) ◽  
pp. 5328
Author(s):  
Miao Ma ◽  
Margaux Lustig ◽  
Michèle Salem ◽  
Dominique Mengin-Lecreulx ◽  
Gilles Phan ◽  
...  

One of the major families of membrane proteins found in prokaryote genome corresponds to the transporters. Among them, the resistance-nodulation-cell division (RND) transporters are highly studied, as being responsible for one of the most problematic mechanisms used by bacteria to resist to antibiotics, i.e., the active efflux of drugs. In Gram-negative bacteria, these proteins are inserted in the inner membrane and form a tripartite assembly with an outer membrane factor and a periplasmic linker in order to cross the two membranes to expulse molecules outside of the cell. A lot of information has been collected to understand the functional mechanism of these pumps, especially with AcrAB-TolC from Escherichia coli, but one missing piece from all the suggested models is the role of peptidoglycan in the assembly. Here, by pull-down experiments with purified peptidoglycans, we precise the MexAB-OprM interaction with the peptidoglycan from Escherichia coli and Pseudomonas aeruginosa, highlighting a role of the peptidoglycan in stabilizing the MexA-OprM complex and also differences between the two Gram-negative bacteria peptidoglycans.


Genes ◽  
2010 ◽  
Vol 1 (3) ◽  
pp. 335-348 ◽  
Author(s):  
Ban-Hock Toh ◽  
Yugang Tu ◽  
Zemin Cao ◽  
Mark E. Cooper ◽  
Zhonglin Chai

Genetics ◽  
2001 ◽  
Vol 157 (3) ◽  
pp. 1267-1276
Author(s):  
Katayoun Afshar ◽  
Pierre Gönczy ◽  
Stephen DiNardo ◽  
Steven A Wasserman

Abstract A number of fundamental processes comprise the cell division cycle, including spindle formation, chromosome segregation, and cytokinesis. Our current understanding of these processes has benefited from the isolation and analysis of mutants, with the meiotic divisions in the male germline of Drosophila being particularly well suited to the identification of the required genes. We show here that the fumble (fbl) gene is required for cell division in Drosophila. We find that dividing cells in fbl-deficient testes exhibit abnormalities in bipolar spindle organization, chromosome segregation, and contractile ring formation. Cytological analysis of larval neuroblasts from null mutants reveals a reduced mitotic index and the presence of polyploid cells. Molecular analysis demonstrates that fbl encodes three protein isoforms, all of which contain a domain with high similarity to the pantothenate kinases of A. nidulans and mouse. The largest Fumble isoform is dispersed in the cytoplasm during interphase, concentrates around the spindle at metaphase, and localizes to the spindle midbody at telophase. During early embryonic development, the protein localizes to areas of membrane deposition and/or rearrangement, such as the metaphase and cellularization furrows. Given the role of pantothenate kinase in production of Coenzyme A and in phospholipid biosynthesis, this pattern of localization is suggestive of a role for fbl in membrane synthesis. We propose that abnormalities in synthesis and redistribution of membranous structures during the cell division cycle underlie the cell division defects in fbl mutant cells.


PLoS ONE ◽  
2010 ◽  
Vol 5 (1) ◽  
pp. e8590 ◽  
Author(s):  
Kamakshi Sureka ◽  
Tofajjen Hossain ◽  
Partha Mukherjee ◽  
Paramita Chatterjee ◽  
Pratik Datta ◽  
...  

1992 ◽  
Vol 101 (1) ◽  
pp. 93-98 ◽  
Author(s):  
TAKASHI MURATA ◽  
MASAMITSU WADA

The preprophase band (PPB) of microtubules (MTs), which appears at the future site of cytokinesis prior to cell division in higher plant cells, disappears by metaphase. Recent studies have shown that displacement of the endoplasm from the PPB region by centrifugation delays the disappearance of the PPB. To study the role of the endoplasm in the cell cycle-specific disruption of the PPB, the filamentous protonemal cells of the fern Adiantum capilius-veneris L. were centrifuged twice so that the first centrifugation displaced the endoplasm from the site of the PPB and the second returned it to its original location. The endoplasm, including the nucleus of various stages of mitosis, could be returned by the second centrifugation to the original region of the PPB, which persists during mitosis in the centrifuged cells. When endoplasm with a prophase nucleus was returned to its original location, the PPB was not disrupted. When endoplasm with a prometa-phase telophase nucleus was similarly returned, the PPB was disrupted within 10 min of termination of centrifugation. In protonemal cells of Adiantum, a second PPB is often formed near the displaced nucleus after the first centrifugation. In cells in which the endoplasm was considered to have been returned to its original location at the prophase/prometaphase transition, the second PPB did not disappear even though the initial PPB was disrupted by the endoplasm. These results suggest that cell cycle-specific disruption of the PPB is regulated by some factor(s) in the endoplasm, which appears at prometaphase, i.e. the stage at which the PPB is disrupted in non-centrifuged cells.


Development ◽  
1992 ◽  
Vol 116 (4) ◽  
pp. 1077-1085 ◽  
Author(s):  
R.K. Dawe ◽  
M. Freeling

The near absence of cell movement in plants makes clonal analysis a particularly informative method for reconstructing the early events of organ formation. We traced the patterns of cell division during maize anther development by inducing sector boundaries that preceded the earliest events of anther initiation. In doing this, we were able to estimate the smallest number of cells that are fated to form an anther, characteristic cell division patterns that occur during anther morphogenesis, and the relationship between the pre-existing symmetry of the initial cells and the final symmetry of the mature anther. Four general conclusions are made: (1) anthers are initiated from small groups of 12 or fewer cells in each of two floral meristematic layers; (2) the early growth of the anther is more like a shoot than a glume or leaf; (3) cell ancestry does not dictate basic structure and (4) the orientation of initial cells predicts the orientation of the four pollen-containing microsporangia, which define the axes of symmetry on the mature anther. The final point is discussed with other data, and an explanation involving a ‘structural template’ is invoked. The idea is that the orientation of initial cells within the floral meristem establishes an architectural pattern into which anther cells are recruited without regard to their cellular lineages. The structural template hypothesis may prove to be generally applicable to problems of pattern formation in plants.


Author(s):  
Dennis D. Cunningham ◽  
Darrel H. Carney ◽  
Joffre B. Baker ◽  
David A. Low ◽  
Kevin C. Glenn
Keyword(s):  

Cells ◽  
2019 ◽  
Vol 8 (7) ◽  
pp. 687 ◽  
Author(s):  
Florentin Huguet ◽  
Shane Flynn ◽  
Paola Vagnarelli

The role of kinases in the regulation of cell cycle transitions is very well established, however, over the past decade, studies have identified the ever-growing importance of phosphatases in these processes. It is well-known that an intact or otherwise non-deformed nuclear envelope (NE) is essential for maintaining healthy cells and any deviation from this can result in pathological conditions. This review aims at assessing the current understanding of how phosphatases contribute to the remodelling of the nuclear envelope during its disassembling and reformation after cell division and how errors in this process may lead to the development of diseases.


Sign in / Sign up

Export Citation Format

Share Document