Quantitative Analysis of Scanning Transmission X-ray Microscopy Images of Gas-Filled PVA-Based Microballoons

Langmuir ◽  
2008 ◽  
Vol 24 (23) ◽  
pp. 13677-13682 ◽  
Author(s):  
Paulo A. L. Fernandes ◽  
George Tzvetkov ◽  
Rainer H. Fink ◽  
Gaio Paradossi ◽  
Andreas Fery
2012 ◽  
Vol 18 (S2) ◽  
pp. 974-975 ◽  
Author(s):  
M. Watanabe ◽  
A. Yasuhara ◽  
E. Okunishi

Extended abstract of a paper presented at Microscopy and Microanalysis 2012 in Phoenix, Arizona, USA, July 29 – August 2, 2012.


2018 ◽  
Vol 194 ◽  
pp. 1-6 ◽  
Author(s):  
K Shinohara ◽  
T Ohigashi ◽  
S Toné ◽  
M Kado ◽  
A Ito

Microscopy ◽  
2020 ◽  
Vol 69 (1) ◽  
pp. 26-30
Author(s):  
Shin Inamoto ◽  
Yuji Otsuka

Abstract The properties of core-shell nanoparticles, which are used for many catalytic processes as an alternative to platinum, depend on the size of both the particle and the shell. It is thus necessary to develop a quantitative method to determine the shell thickness. Pd–Pt core-shell particles were analyzed using scanning transmission electron microscopy (STEM) and energy-dispersive X-ray spectroscopy (EDX). Quantitative EDX line profiles acquired from the core-shell particle were compared to four core-shell models. The results indicate that the thickness of the Pt shell corresponds to two atomic layers. Meanwhile, high-angle annular dark-field STEM images from the same particle were analyzed and compared to simulated images. Again, this experiment demonstrates that the shell thickness was of two atomic layers. Our results indicate that, in small particles, it is possible to use EDX for a precise atomic-scale quantitative analysis.


2021 ◽  
Vol 28 (4) ◽  
Author(s):  
Simone Finizio ◽  
Benjamin Watts ◽  
Jörg Raabe

Through Monte Carlo simulations, we investigate how various experimental parameters can influence the quality of time-resolved scanning transmission X-ray microscopy images. In particular, the effect of the X-ray photon flux, of the thickness of the investigated samples, and of the frequency of the dynamical process under investigation on the resulting time-resolved image are investigated. The ideal sample and imaging conditions that allow for an optimal image quality are then identifed.


Author(s):  
V. V. Damiano ◽  
R. P. Daniele ◽  
H. T. Tucker ◽  
J. H. Dauber

An important example of intracellular particles is encountered in silicosis where alveolar macrophages ingest inspired silica particles. The quantitation of the silica uptake by these cells may be a potentially useful method for monitoring silica exposure. Accurate quantitative analysis of ingested silica by phagocytic cells is difficult because the particles are frequently small, irregularly shaped and cannot be visualized within the cells. Semiquantitative methods which make use of particles of known size, shape and composition as calibration standards may be the most direct and simplest approach to undertake. The present paper describes an empirical method in which glass microspheres were used as a model to show how the ratio of the silicon Kα peak X-ray intensity from the microspheres to that of a bulk sample of the same composition correlated to the mass of the microsphere contained within the cell. Irregular shaped silica particles were also analyzed and a calibration curve was generated from these data.


Author(s):  
H.J. Dudek

The chemical inhomogenities in modern materials such as fibers, phases and inclusions, often have diameters in the region of one micrometer. Using electron microbeam analysis for the determination of the element concentrations one has to know the smallest possible diameter of such regions for a given accuracy of the quantitative analysis.In th is paper the correction procedure for the quantitative electron microbeam analysis is extended to a spacial problem to determine the smallest possible measurements of a cylindrical particle P of high D (depth resolution) and diameter L (lateral resolution) embeded in a matrix M and which has to be analysed quantitative with the accuracy q. The mathematical accounts lead to the following form of the characteristic x-ray intens ity of the element i of a particle P embeded in the matrix M in relation to the intensity of a standard S


Author(s):  
J.M. Titchmarsh

The advances in recent years in the microanalytical capabilities of conventional TEM's fitted with probe forming lenses allow much more detailed investigations to be made of the microstructures of complex alloys, such as ferritic steels, than have been possible previously. In particular, the identification of individual precipitate particles with dimensions of a few tens of nanometers in alloys containing high densities of several chemically and crystallographically different precipitate types is feasible. The aim of the investigation described in this paper was to establish a method which allowed individual particle identification to be made in a few seconds so that large numbers of particles could be examined in a few hours.A Philips EM400 microscope, fitted with the scanning transmission (STEM) objective lens pole-pieces and an EDAX energy dispersive X-ray analyser, was used at 120 kV with a thermal W hairpin filament. The precipitates examined were extracted using a standard C replica technique from specimens of a 2¼Cr-lMo ferritic steel in a quenched and tempered condition.


Author(s):  
J. R. Michael ◽  
K. A. Taylor

Although copper is considered an incidental or trace element in many commercial steels, some grades contain up to 1-2 wt.% Cu for precipitation strengthening. Previous electron microscopy and atom-probe/field-ion microscopy (AP/FIM) studies indicate that the precipitation of copper from ferrite proceeds with the formation of Cu-rich bcc zones and the subsequent transformation of these zones to fcc copper particles. However, the similarity between the atomic scattering amplitudes for iron and copper and the small misfit between between Cu-rich particles and the ferrite matrix preclude the detection of small (<5 nm) Cu-rich particles by conventional transmission electron microscopy; such particles have been imaged directly only by FIM. Here results are presented whereby the Cu Kα x-ray signal was used in a dedicated scanning transmission electron microscope (STEM) to image small Cu-rich particles in a steel. The capability to detect these small particles is expected to be helpful in understanding the behavior of copper in steels during thermomechanical processing and heat treatment.


Author(s):  
J. Bentley ◽  
E. A. Kenik

Instruments combining a 100 kV transmission electron microscope (TEM) with scanning transmission (STEM), secondary electron (SEM) and x-ray energy dispersive spectrometer (EDS) attachments to give analytical capabilities are becoming increasingly available and useful. Some typical applications in the field of materials science which make use of the small probe size and thin specimen geometry are the chemical analysis of small precipitates contained within a thin foil and the measurement of chemical concentration profiles near microstructural features such as grain boundaries, point defect clusters, dislocations, or precipitates. Quantitative x-ray analysis of bulk samples using EDS on a conventional SEM is reasonably well established, but much less work has been performed on thin metal foils using the higher accelerating voltages available in TEM based instruments.


Sign in / Sign up

Export Citation Format

Share Document