Does Obesity Increase Risk for Iron Deficiency? A Review of the Literature and the Potential Mechanisms

2010 ◽  
Vol 80 (45) ◽  
pp. 263-270 ◽  
Author(s):  
Ana C. Cepeda-Lopez ◽  
Isabelle Aeberli ◽  
Michael B. Zimmermann

Increasing obesity is a major global health concern while at the same time iron-deficiency anemia remains common worldwide. Although these two conditions represent opposite ends of the spectrum of over- and under-nutrition, they appear to be linked: overweight individuals are at higher risk of iron deficiency than normal-weight individuals. Potential explanations for this association include dilutional hypoferremia, poor dietary iron intake, increased iron requirements, and/or impaired iron absorption in obese individuals. Recent evidence suggests obesity-related inflammation may play a central role through its regulation of hepcidin. Hepcidin levels are higher in obese individuals and are linked to subclinical inflammation; this may reduce iron absorption and blunt the effects of iron fortification. Thus, low iron status in overweight individuals may result from a combination of nutritional (reduced absorption) and functional (increased sequestration) iron deficiency. In this review, we focus on subclinical inflammation in obesity, and its effect on hepcidin levels, as the most plausible explanation for the link between iron deficiency and obesity.

Author(s):  
Joanna Gajewska ◽  
Jadwiga Ambroszkiewicz ◽  
Witold Klemarczyk ◽  
Ewa Głąb-Jabłońska ◽  
Halina Weker ◽  
...  

Iron metabolism may be disrupted in obesity, therefore, the present study assessed the iron status, especially ferroportin and hepcidin concentrations, as well as associations between the ferroportin-hepcidin axis and other iron markers in prepubertal obese children. The following were determined: serum ferroportin, hepcidin, ferritin, soluble transferrin receptor (sTfR), iron concentrations and values of hematological parameters as well as the daily dietary intake in 40 obese and 40 normal-weight children. The ferroportin/hepcidin and ferritin/hepcidin ratios were almost two-fold lower in obese children (p = 0.001; p = 0.026, respectively). Similar iron concentrations (13.2 vs. 15.2 µmol/L, p = 0.324), the sTfR/ferritin index (0.033 vs. 0.041, p = 0.384) and values of hematological parameters were found in obese and control groups, respectively. Iron daily intake in the obese children examined was consistent with recommendations. In this group, the ferroportin/hepcidin ratio positively correlated with energy intake (p = 0.012), dietary iron (p = 0.003) and vitamin B12 (p = 0.024). In the multivariate regression model an association between the ferroportin/hepcidin ratio and the sTfR/ferritin index in obese children (β = 0.399, p = 0.017) was found. These associations did not exist in the controls. The results obtained suggest that in obese children with sufficient iron intake, the altered ferroportin-hepcidin axis may occur without signs of iron deficiency or iron deficiency anemia. The role of other micronutrients, besides dietary iron, may also be considered in the iron status of these children.


2004 ◽  
Vol 74 (6) ◽  
pp. 435-443 ◽  
Author(s):  
Hertrampf ◽  
Olivares

Iron amino acid chelates, such as iron glycinate chelates, have been developed to be used as food fortificants and therapeutic agents in the prevention and treatment of iron deficiency anemia. Ferrous bis-glycine chelate (FeBC), ferric tris-glycine chelate, ferric glycinate, and ferrous bis-glycinate hydrochloride are available commercially. FeBC is the most studied and used form. Iron absorption from FeBC is affected by enhancers and inhibitors of iron absorption, but to a lesser extent than ferrous sulfate. Its absorption is regulated by iron stores. FeBC is better absorbed from milk, wheat, whole maize flour, and precooked corn flour than is ferrous sulfate. Supplementation trials have demonstrated that FeBC is efficacious in treating iron deficiency anemia. Consumption of FeBC-fortified liquid milk, dairy products, wheat rolls, and multi-nutrient beverages is associated with an improvement of iron status. The main limitations to the widespread use of FeBC in national fortification programs are the cost and the potential for promoting organoleptic changes in some food matrices. Additional research is required to establish the bioavailability of FeBC in different food matrices. Other amino acid chelates should also be evaluated. Finally there is an urgent need for more rigorous efficacy trials designed to define the relative merits of amino acid chelates when compared with bioavailable iron salts such as ferrous sulfate and ferrous fumarate and to determine appropriate fortification levels


2020 ◽  
Vol 3 (1) ◽  
pp. 42
Author(s):  
Juhrotun Nisa ◽  
Adevia Maulidya Chikmah ◽  
Kharisma Anggra Lorenza ◽  
Kiki Rizki Amalia ◽  
Tri Agustin

High risk groups experience anemia, namely adolescents, especially young women, this is due to the need for iron absorption peaking at the age of 14-15 years while young men, experiencing peak absorption of iron one or two years later. The main risk factors for iron deficiency anemia are low iron intake, poor absorption of iron, and periods of life when the need for iron is high. Food fortification is the most effective way to prevent iron deficiency. One of the foods that can prevent iron is green beans. Consuming 2 cups of green beans every day means consuming 50% of the daily requirement of iron, 18 mg and can increase hemoglobin levels for 2 weeks. The purpose of this PKM is to provide an alternative picture of food in increasing hemoglobin levels in adolescents. The method used in this PKM is screening anemia through examination of hemoglobin and health education in young women in SMK 1 Tegal City. PKM results show that there is an increase in adolescent knowledge about anemia, the number of adolescent girls experiencing anemia is 35% of the total respondents. Iron is the main nutrient that plays an important role in the synthesis of hemoglobin so that the lack of iron intake obtained from food causes hemoglobin levels to decrease.


Nutrients ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 139 ◽  
Author(s):  
Chiao-Ming Chen ◽  
Shu-Ci Mu ◽  
Chun-Kuang Shih ◽  
Yi-Ling Chen ◽  
Li-Yi Tsai ◽  
...  

Iron deficiency (ID) and iron deficiency anemia (IDA) typically occur in developing countries. Notably, ID and IDA can affect an infant’s emotion, cognition, and development. Breast milk is considered the best food for infants. However, recent studies have indicated that breastfeeding for more than six months increases the risk of ID. This study investigated the prevalence of ID and IDA, as well as the association between feeding type and iron nutritional status in northern Taiwan. A cross-sectional study was conducted on infants who returned to the well-baby clinic for routine examination from October 2012 to January 2014. Overall, 509 infants aged 1–12 months completed the iron nutritional status analysis, anthropometric measurement, and dietary intake assessment, including milk and complementary foods. The results revealed that 49 (10%) and 21 (4%) infants in their first year of life had ID and IDA, respectively, based on the World Health Organization criteria. Breastfed infants had a higher prevalence rate of ID and IDA than mixed-fed and formula-fed infants (p < 0.001). Regarding biomarkers of iron status, plasma hemoglobin (Hb), ferritin, and transferrin saturation (%) levels were significantly lower in ID and IDA groups. The prevalence of ID and IDA were 3.7% and 2.7%, respectively, in infants under six months of age, but increased to 20.4% and 6.6%, respectively, in infants above six months of age. The healthy group had a higher total iron intake than ID and IDA groups, mainly derived from infant formula. The total dietary iron intake was positively correlated with infants’ Hb levels. Compared with formula-fed infants, the logistic regression revealed that the odds ratio for ID was 2.157 (95% confidence interval [CI]: 1.369–3.399) and that for IDA was 4.196 (95% CI: 1.780–9.887) among breastfed infants (p < 0.001) after adjusted for all confounding factors (including gestational week, birthweight, sex, body weight percentile, body length percentile, age of infants, mothers’ BMI, gestational weight gain, education level, and hemoglobin level before delivery). In conclusion, our results determined that breastfeeding was associated with an increased the prevalence of ID and/or IDA, especially in infants above six months. This suggests that mothers who prolonged breastfeed after six months could provide high-quality iron-rich foods to reduce the prevalence of ID and IDA.


2020 ◽  
Vol 150 (10) ◽  
pp. 2666-2672
Author(s):  
Isabelle Herter-Aeberli ◽  
Maren M Fischer ◽  
Ines M Egli ◽  
Christophe Zeder ◽  
Michael B Zimmermann ◽  
...  

ABSTRACT Background Iron deficiency is a major public health concern in Ethiopia, where the traditional diet is based on tef injera. Iron absorption from injera is low due to its high phytic acid (PA) content. Objectives We investigated ways to increase iron absorption from FeSO4-fortified tef injera in normal-weight healthy women (aged 21–29 y). Methods Study A (n = 22) investigated the influence on fractional iron absorption (FIA) from FeSO4-fortified injera of 1) replacing 10% tef flour with whole wheat flour (a source of wheat phytase), or 2) adding an isolated phytase from Aspergillus niger. Study B (n = 18) investigated the influence on FIA of replacing FeSO4 in tef injera with different amounts of NaFeEDTA. In both studies, the iron fortificants were labeled with stable isotopes and FIA was calculated from erythrocyte incorporation of stable iron isotopes 14 d after administration. Results In study A, the median (IQR) FIA from the 100% tef injera meal was 1.5% (0.7–2.8%). This increased significantly (P &lt; 0.05) to 5.3% (2.4–7.1%) on addition of 10% whole wheat flour, and to 3.6% (1.6–6.2%) on addition of A. niger phytase. PA content of the 3 meals was 0.62, 0.20, and 0.02 g/meal, respectively. In study B, the median (IQR) FIA from the 100% tef injera meal was 3.3% (1.1–4.4%) and did not change significantly (P &gt; 0.05) on replacing 50% or 75% of FeSO4 with NaFeEDTA. Conclusions FIA from tef injera by young women was very low. NaFeEDTA was ineffective at increasing iron absorption, presumably due to the relatively low EDTA:Fe molar ratios. Phytate degradation, however, greatly increased during tef fermentation on addition of native or isolated phytases. Replacing 10% tef with whole wheat flour during injera fermentation tripled FIA in young women and should be considered as a potential strategy to improve iron status in Ethiopia.


Blood ◽  
2008 ◽  
Vol 112 (10) ◽  
pp. 4276-4283 ◽  
Author(s):  
Sarah H. Atkinson ◽  
Kirk A. Rockett ◽  
Gareth Morgan ◽  
Philip A. Bejon ◽  
Giorgio Sirugo ◽  
...  

Abstract Plasma levels of tumor necrosis factor-α (TNF-α) are significantly raised in malaria infection and TNF-α is thought to inhibit intestinal iron absorption and macrophage iron release. This study investigated putative functional single nucleotide polymorphisms (SNPs) and haplotypes across the major histocompatibility complex (MHC) class III region, including TNF and its immediate neighbors nuclear factor of κ light polypeptide gene enhancer in B cells (lκBL), inhibitor-like 1 and lymphotoxin alpha (LTA), in relation to nutritional iron status and anemia, in a cohort of 780 children across a malaria season. The prevalence of iron deficiency anemia (IDA) increased over the malaria season (P < .001). The TNF−308 AA genotype was associated with an increased risk of iron deficiency (adjusted OR 8.1; P = .001) and IDA (adjusted OR 5.1; P = .01) at the end of the malaria season. No genotypes were associated with IDA before the malaria season. Thus, TNF appears to be a risk factor for iron deficiency and IDA in children in a malaria-endemic environment and this is likely to be due to a TNF-α–induced block in iron absorption.


Nutrients ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 2045 ◽  
Author(s):  
Mota ◽  
Tounian ◽  
Guillou ◽  
Pierre ◽  
Membré

: Dietary iron deficiency (ID) is the first nutritional deficiency in the world, in terms of disability adjusted life years (DALY). This nutritional deficiency may lead to anemia, especially among children, adolescents, and adult women. The aim of this study was to build an original probabilistic model to quantitatively assess the ID, the iron deficiency anemia (IDA) and the subsequent health burden in France expressed in DALY, per age class and gender. The model considered the distribution of absorbed iron intake, the iron requirement distribution established by the European Food Safety Authority and the iron status in France. Uncertainty due to lack of data and variability due to biological diversity were taken into account and separated using a second-order Monte Carlo procedure. A total of 1290 (95% CI = 1230–1350) IDA cases corresponding to 16 (95% CI = 11–20) DALY were estimated per 100,000 individuals per year. The major contributors to IDA burden were menstruating females aged from 25 to 44 years old. Then, a consumption scenario was built with ground beef as intake, an increase in red meat consumption to 100 g/d would not eliminate entirely the IDA burden. The quantitative methodology applied here for France could be reused for other populations.


Nutrients ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 4201
Author(s):  
Vito Leonardo Miniello ◽  
Maria Carmen Verga ◽  
Andrea Miniello ◽  
Cristina Di Mauro ◽  
Lucia Diaferio ◽  
...  

The complementary feeding (CF) period that takes place between 6 and 24 months of age is of key importance for nutritional and developmental reasons during the transition from exclusively feeding on milk to family meals. In 2021, a multidisciplinary panel of experts from four Italian scientific pediatric societies elaborated a consensus document on CF, focusing in particular on healthy term infants. The aim was to provide healthcare providers with useful guidelines for clinical practice. Complementary feeding is also the time window when iron deficiency (ID) and iron deficiency anemia (IDA) are most prevalent. Thus, it is appropriate to address the problem of iron deficiency through nutritional interventions. Adequate iron intake during the first two years is critical since rapid growth in that period increases iron requirements per kilogram more than at any other developmental stage. Complementary foods should be introduced at around six months of age, taking into account infant iron status.


Nutrients ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 2340
Author(s):  
Jordie A. J. Fischer ◽  
Carolina S. Sasai ◽  
Crystal D. Karakochuk

Oral contraceptive use has been associated with decreased menstrual blood losses; thus, can independently reduce the risk of anemia and iron deficiency in women. Manufacturers have recently started to include supplemental iron in the non-hormonal placebo tablets of some contraceptives. The aims of this narrative review are: (i) to describe the relationship between oral contraceptive use and both anemia and iron status in women; (ii) to describe the current formulations of iron-containing oral contraceptives (ICOC) available on the market; and (iii) to systematically review the existing literature on the effect of ICOC on biomarkers of anemia and iron status in women. We discovered 21 brands of ICOC, most commonly including 25 mg elemental iron as ferrous fumarate, for seven days, per monthly tablet package. Our search identified one randomized trial evaluating the effectiveness of ICOC use compared to two non-ICOC on increasing hemoglobin (Hb) and iron status biomarker concentrations in women; whereafter 12 months of contraception use, there were no significant differences in Hb concentration nor markers of iron status between the groups. ICOC has the potential to be a cost-effective solution to address both family planning needs and iron deficiency anemia. Yet, more rigorous trials evaluating the effectiveness of ICOC on improving markers of anemia and iron deficiency, as well as investigating the safety of its consumption among iron-replete populations, are warranted.


Sign in / Sign up

Export Citation Format

Share Document