scholarly journals Evaluation of 2-[18F]fluoroacetate Kinetics in Rodent Models of Cerebral Hypoxia–Ischemia

2014 ◽  
Vol 34 (5) ◽  
pp. 836-844 ◽  
Author(s):  
Yu Ouyang ◽  
Jeff N Tinianow ◽  
Simon R Cherry ◽  
Jan Marik

Glia account for 90% of human brain cells and have a significant role in brain homeostasis. Thus, specific in vivo imaging markers of glial metabolism are potentially valuable. In the brain, 2-fluoroacetate is selectively taken up by glial cells and becomes metabolically trapped in the tricarboxylic acid cycle. Recent work in rodent brain injury models demonstrated elevated lesion uptake of 2-[18F]fluoroacetate ([18F]FACE), suggesting possible use for specifically imaging glial metabolism. To assess this hypothesis, we evaluated [18F]FACE kinetics in rodent models of cerebral hypoxia-ischemia at 3 and 24 hours post insult. Lesion uptake was significantly higher at 30 minutes post injection ( P<0.05). An image-based method for input function estimation using cardiac blood was validated. Analysis of whole blood showed no significant metabolites and plasma activity concentrations of ˜50% that of whole blood. Kinetic models describing [18F]FACE uptake were developed and quantitatively compared. Elevated [18F]FACE uptake was found to be driven primarily by K1/k2 rather than k3, but changes in the latter were detectable. The two-tissue irreversible uptake model (2T3k) was found to be necessary and sufficient for modeling [18F]FACE uptake. We conclude that kinetic modeling of [18F]FACE uptake represents a potentially useful tool for interrogation of glial metabolism.

2018 ◽  
Vol 70 (1) ◽  
pp. 56-66 ◽  
Author(s):  
Gabriella Koning ◽  
Ellinor Lyngfelt ◽  
Pernilla Svedin ◽  
Anna‐Lena Leverin ◽  
Masako Jinnai ◽  
...  

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 1727-1727
Author(s):  
Greg Coffey ◽  
DeGuzman Francis ◽  
Mayuko Inagaki ◽  
Yvonne Pak ◽  
Suzanne Delaney ◽  
...  

Abstract Abstract 1727 Genetic ablation of Syk in hematopoietic cells blocks various leukocyte immune functions, and protects mice from immune-complex mediated inflammation. These data have helped to identify Syk as an important therapeutic target for immune-mediated diseases. The next step is to test the hypothesis that low level, and specific, pharmacological inhibition of Syk retains the immunomodulatory potential observed with Syk genetic deficiency. With this goal in mind, we provide an update on the development of P505-15, a highly specific and potent small molecule Syk inhibitor which suppresses signaling and activation of primary human and rodent leukocyte immune function. The specificity of P505-15 was tested in a panel of 270 independent purified kinase assays at 300nM. At this concentration, Syk and 8 other kinases were inhibited by ≥ 80%. Subsequent analysis demonstrated a Syk IC50 of 1nM, whereas the next most potently inhibited kinase required an IC50 of 81nM. In a variety of cellular assays we observed potent inhibition of B cell receptor (BCR) induced Syk signaling, but not of Lyn, phorbol 12-myristate 13-acetate (PMA) induced protein kinase C, T cell receptor induced Zap70, or cytokine induced JAK1 (IL6), JAK2 (GM-CSF), or JAK1/3 (IL4) dependent STAT phosphorylation. Consistently, in Ba/F3 cell lines transformed by various kinases, P505-15 only inhibited proliferation of those cells transformed by Syk (IC50 = 0.12μM), and not by Zap70 or JAK family members (IC50 > 6μM). In human whole blood, P505-15 suppressed BCR-induced Syk signaling and cellular activation with IC50's of 0.383μM and 0.362μM, respectively. FceR1-induced basophil degranulation was similarly suppressed with an IC50 of 0.171μM. Importantly, Syk-independent signaling and cellular activation in human whole blood via PMA (B cell assays) or fMLP (basophil degranulation) was unaffected by this compound at 4μM and 1μM, respectively (the highest concentrations tested), again demonstrating its specificity of action. Oral administration of P505-15 in mice led to a reversible inhibition of Syk, with an IC50 of 0.282μM as determined by an ex vivo whole blood BCR stimulation assay. Finally, we tested the immunomodulatory potential of specific Syk inhibition in vivo using rodent models of rheumatoid arthritis. Oral administration of P505-15 resulted in statistically significant and dose-dependent anti-inflammatory activity in both the mouse collagen antibody-induced arthritis and rat collagen induced arthritis models. In each case, anti-inflammatory effects were achieved at sub-micromolar plasma concentrations in which Syk specificity was maintained. These data support the hypothesis that specific Syk inhibition can modulate immune function in vivo, and provide a therapeutic strategy for the treatment of human inflammatory disease by inhibition of this kinase. P505-15 is currently being evaluated in phase I clinical trials. Disclosures: Coffey: Portola Pharmaceuticals: Employment. Francis:Portola Pharmaceuticals: Employment. Inagaki:Portola Pharmaceuticals: Employment. Pak:Portola Pharmaceuticals: Employment. Delaney:Portola Pharmaceuticals: Employment. Betz:Portola Pharmaceuticals: Employment. Jia:Portola Pharmaceuticals: Employment. Xu:Portola Pharmaceuticals: Employment. Bauer:Portola Pharmaceuticals: Employment. Song:Portola Pharmaceuticals: Employment. Pandey:Portola Pharmaceuticals: Employment. Baker:Portola Pharmaceuticals: Employment. Hollenbach:Portola Pharmaceuticals: Employment. Phillips:Portola Pharmaceuticals: Employment. Sinha:Portola Pharmaceuticals: Employment.


2009 ◽  
Vol 23 (S1) ◽  
Author(s):  
JILL J WILLIAMS ◽  
Nicolas Bazan ◽  
Vadim S Ten ◽  
Susan J Vannucci ◽  
Christopher Mastropietro ◽  
...  

2007 ◽  
Vol 204 (8) ◽  
pp. 1741-1748 ◽  
Author(s):  
Changlian Zhu ◽  
Xiaoyang Wang ◽  
Johanna Deinum ◽  
Zhiheng Huang ◽  
Jianfeng Gao ◽  
...  

Upon cerebral hypoxia-ischemia (HI), apoptosis-inducing factor (AIF) can move from mitochondria to nuclei, participate in chromatinolysis, and contribute to the execution of cell death. Previous work (Cande, C., N. Vahsen, I. Kouranti, E. Schmitt, E. Daugas, C. Spahr, J. Luban, R.T. Kroemer, F. Giordanetto, C. Garrido, et al. 2004. Oncogene. 23:1514–1521) performed in vitro suggests that AIF must interact with cyclophilin A (CypA) to form a proapoptotic DNA degradation complex. We addressed the question as to whether elimination of CypA may afford neuroprotection in vivo. 9-d-old wild-type (WT), CypA+/−, or CypA−/− mice were subjected to unilateral cerebral HI. The infarct volume after HI was reduced by 47% (P = 0.0089) in CypA−/− mice compared with their WT littermates. Importantly, CypA−/− neurons failed to manifest the HI-induced nuclear translocation of AIF that was observed in WT neurons. Conversely, CypA accumulated within the nuclei of damaged neurons after HI, and this nuclear translocation of CypA was suppressed in AIF-deficient harlequin mice. Immunoprecipitation of AIF revealed coprecipitation of CypA, but only in injured, ischemic tissue. Surface plasmon resonance revealed direct molecular interactions between recombinant AIF and CypA. These data indicate that the lethal translocation of AIF to the nucleus requires interaction with CypA, suggesting a model in which two proteins that normally reside in separate cytoplasmic compartments acquire novel properties when moving together to the nucleus.


1985 ◽  
Vol 54 (03) ◽  
pp. 612-616 ◽  
Author(s):  
A J Carter ◽  
S Heptinstall

SummaryThe platelet aggregation that occurred in whole blood in response to several aggregating agents (collagen, arachidonic acid, adenosine diphosphate, adrenaline and thrombin) was measured using an Ultra-Flo 100 Whole Blood Platelet Counter. The amounts of thromboxane B2 produced were measured by radioimmunoassay. The effects of various inhibitors of thromboxane synthesis and the effects of apyrase, an enzyme that destroys adenosine diphosphate, were determined.Platelet aggregation was always accompanied by the production of thromboxane B2, and the amounts produced depended on the nature and concentration of the aggregating agent used. The various inhibitors of thromboxane synthesis - aspirin and flurbiprofen (cyclo-oxygenase inhibitors), BW755C (a cyclo-oxygenase and lipoxygenase inhibitor) and dazoxiben (a selective thromboxane synthase inhibitor) - did not markedly inhibit aggregation. Results obtained using apyrase showed that adenosine diphosphate contributed to the aggregation process, and that its role must be acknowledged when devising means of inhibiting platelet aggregation in vivo.


1986 ◽  
Vol 56 (02) ◽  
pp. 147-150 ◽  
Author(s):  
V Pengo ◽  
M Boschello ◽  
A Marzari ◽  
M Baca ◽  
L Schivazappa ◽  
...  

SummaryA brief contact between native whole blood and ADP promotes a dose-dependent release of platelet a-granules without a fall in the platelet number. We assessed the “ex vivo” effect of three widely used antiplatelet drugs, aspirin dipyridamole and ticlopidine, on this system. Aspirin (a single 800 mg dose) and dipyridamole (300 mg/die for four days) had no effect, while ticlopidine (500 mg/die for four days) significantly reduced the a-granules release for an ADP stimulation of 0.4 (p <0.02), 1.2 (p <0.01) and 2 pM (p <0.01). No drug, however, completeley inhibits this early stage of platelet activation. The platelet release of α-granules may be related to platelet shape change of the light transmission aggregometer and may be important “in vivo” by enhancing platelet adhesiveness and by liberating the plateletderived growth factor.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Michele Dei Cas ◽  
Jessica Rizzo ◽  
Mariangela Scavone ◽  
Eti Femia ◽  
Gian Marco Podda ◽  
...  

AbstractLow-dose aspirin (ASA) is used to prevent cardiovascular events. The most commonly used formulation is enteric-coated ASA (EC-ASA) that may be absorbed more slowly and less efficiently in some patients. To uncover these “non-responders” patients, the availability of proper analytical methods is pivotal in order to study the pharmacodynamics, the pharmacokinetics and the metabolic fate of ASA. We validated a high-throughput, isocratic reversed-phase, negative MRM, LC–MS/MS method useful for measuring circulating ASA and salicylic acid (SA) in blood and plasma. ASA-d4 and SA-d4 were used as internal standards. The method was applied to evaluate: (a) the "in vitro" ASA degradation by esterases in whole blood and plasma, as a function of time and concentration; (b) the "in vivo" kinetics of ASA and SA after 7 days of oral administration of EC-ASA or plain-ASA (100 mg) in healthy volunteers (three men and three women, 37–63 years). Parameters of esterases activity were Vmax 6.5 ± 1.9 and Km 147.5 ± 64.4 in plasma, and Vmax 108.1 ± 20.8 and Km 803.2 ± 170.7 in whole blood. After oral administration of the two formulations, tmax varied between 3 and 6 h for EC-ASA and between 0.5 and 1.0 h for plain-ASA. Higher between-subjects variability was seen after EC-ASA, and one subject had a delayed absorption over eight hours. Plasma AUC was 725.5 (89.8–1222) for EC-ASA, and 823.1(624–1196) ng h/mL (median, 25–75% CI) for plain ASA. After the weekly treatment, serum levels of TxB2 were very low (< 10 ng/mL at 24 h from the drug intake) in all the studied subjects, regardless of the formulation or the tmax. This method proved to be suitable for studies on aspirin responsiveness.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Eugene Kim ◽  
Davide Di Censo ◽  
Mattia Baraldo ◽  
Camilla Simmons ◽  
Ilaria Rosa ◽  
...  

AbstractAmyloid plaques are a hallmark of Alzheimer’s disease (AD) that develop in its earliest stages. Thus, non-invasive detection of these plaques would be invaluable for diagnosis and the development and monitoring of treatments, but this remains a challenge due to their small size. Here, we investigated the utility of manganese-enhanced MRI (MEMRI) for visualizing plaques in transgenic rodent models of AD across two species: 5xFAD mice and TgF344-AD rats. Animals were given subcutaneous injections of MnCl2 and imaged in vivo using a 9.4 T Bruker scanner. MnCl2 improved signal-to-noise ratio but was not necessary to detect plaques in high-resolution images. Plaques were visible in all transgenic animals and no wild-types, and quantitative susceptibility mapping showed that they were more paramagnetic than the surrounding tissue. This, combined with beta-amyloid and iron staining, indicate that plaque MR visibility in both animal models was driven by plaque size and iron load. Longitudinal relaxation rate mapping revealed increased manganese uptake in brain regions of high plaque burden in transgenic animals compared to their wild-type littermates. This was limited to the rhinencephalon in the TgF344-AD rats, while it was most significantly increased in the cortex of the 5xFAD mice. Alizarin Red staining suggests that manganese bound to plaques in 5xFAD mice but not in TgF344-AD rats. Multi-parametric MEMRI is a simple, viable method for detecting amyloid plaques in rodent models of AD. Manganese-induced signal enhancement can enable higher-resolution imaging, which is key to visualizing these small amyloid deposits. We also present the first in vivo evidence of manganese as a potential targeted contrast agent for imaging plaques in the 5xFAD model of AD.


2021 ◽  
Vol 22 (3) ◽  
pp. 1435
Author(s):  
Aimilia Papathanasiou ◽  
Fotios Spyropoulos ◽  
Zoe Michael ◽  
Kyoung Joung ◽  
Despina Briana ◽  
...  

Pulmonary hypertension (PH) is associated with meta-inflammation related to obesity but the role of adipose tissue in PH pathogenesis is unknown. We hypothesized that adipose tissue-derived metabolic regulators are altered in human and experimental PH. We measured circulating levels of fatty acid binding protein 4 (FABP-4), fibroblast growth factor -21 (FGF-21), adiponectin, and the mRNA levels of FABP-4, FGF-21, and peroxisome proliferator-activated receptor γ (PPARγ) in lung tissue of patients with idiopathic PH and healthy controls. We also evaluated lung and adipose tissue expression of these mediators in the three most commonly used experimental rodent models of pulmonary hypertension. Circulating levels of FABP-4, FGF-21, and adiponectin were significantly elevated in PH patients compared to controls and the mRNA levels of these regulators and PPARγ were also significantly increased in human PH lungs and in the lungs of rats with experimental PH compared to controls. These findings were coupled with increased levels of adipose tissue mRNA of genes related to glucose uptake, glycolysis, tricarboxylic acid cycle, and fatty acid oxidation in experimental PH. Our results support that metabolic alterations in human PH are recapitulated in rodent models of the disease and suggest that adipose tissue may contribute to PH pathogenesis.


Sign in / Sign up

Export Citation Format

Share Document