scholarly journals Surface-modified elastomeric nanofluidic devices for single nanoparticle trapping

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Deepika Sharma ◽  
Roderick Y. H. Lim ◽  
Thomas Pfohl ◽  
Yasin Ekinci

AbstractOur work focuses on the development of simpler and effective production of nanofluidic devices for high-throughput charged single nanoparticle trapping in an aqueous environment. Single nanoparticle confinement using electrostatic trapping has been an effective approach to study the fundamental properties of charged molecules under a controlled aqueous environment. Conventionally, geometry-induced electrostatic trapping devices are fabricated using SiOx-based substrates and comprise nanochannels imbedded with nanoindentations such as nanopockets, nanoslits and nanogrids. These geometry-induced electrostatic trapping devices can only trap negatively charged particles, and therefore, to trap positively charged particles, modification of the device surface is required. However, the surface modification process of a nanofluidic device is cumbersome and time consuming. Therefore, here, we present a novel approach for the development of surface-modified geometry-induced electrostatic trapping devices that reduces the surface modification time from nearly 5 days to just a few hours. We utilized polydimethylsiloxane for the development of a surface-modified geometry-induced electrostatic trapping device. To demonstrate the device efficiency and success of the surface modification procedure, a comparison study between a PDMS-based geometry-induced electrostatic trapping device and the surface-modified polydimethylsiloxane-based device was performed. The device surface was modified with two layers of polyelectrolytes (1: poly(ethyleneimine) and 2: poly(styrenesulfonate)), which led to an overall negatively charged surface. Our experiments revealed the presence of a homogeneous surface charge density inside the fluidic devices and equivalent trapping strengths for the surface-modified and native polydimethylsiloxane-based geometry-induced electrostatic trapping devices. This work paves the way towards broader use of geometry-induced electrostatic trapping devices in the fields of biosensing, disease diagnosis, molecular analysis, fluid quality control and pathogen detection.

2021 ◽  
Vol 38 (2) ◽  
pp. 2170003
Author(s):  
Deepika Sharma ◽  
Roderick Y. H. Lim ◽  
Thomas Pfohl ◽  
Yasin Ekinci

2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Min Liu ◽  
Hongmei Li ◽  
Yangsu Zeng

Tungsten trioxide (WO3) was surface modified with Cu(II) nanoclusters and titanium dioxide (TiO2) nanopowders by using a simple impregnation method followed by a physical combining method. The obtained nanocomposites were studied by scanning electron microscope, X-ray photoelectron spectroscopy spectra, UV-visible light spectra, and photoluminescence, respectively. Although the photocatalytic activity of WO3was negligible under visible light irradiation, the visible light photocatalytic activity of WO3was drastically enhanced by surface modification of Cu(II) nanoclusters and TiO2nanopowders. The enhanced photocatalytic activity is due to the efficient charge separation by TiO2and Cu(II) nanoclusters functioning as cocatalysts on the surface. Thus, this simple strategy provides a facile route to prepare efficient visible-light-active photocatalysts for practical application.


2020 ◽  
Vol 42 (10) ◽  
pp. 472-481
Author(s):  
Hee So Oh ◽  
Jae-Soo Chang

Objectives : The physicochemical characteristics of Mg-biochar composites derived from kelp and pine after pretreatment with MgCl2 were analyzed, and their adsorption capacities for an anionic dye, Congo red (CR), were evaluated.Methods : After pretreating 60 g of kelp and pine sawdust in 1 L of 0.1 M MgCl2・6H2O, the raw materials were pyrolyzed at 500℃ to produce Mg-biochar composites (kelp based KB-Mg and pine based PB-Mg). The fundamental physicochemical characteristics of the Mg-biochar composites were examined, and their adsorption capacities for CR were investigated using different initial pH values, adsorption kinetic models, and adsorption isotherm models.Results and discussion : The Mg-biochar composites showed the development of uniform deposits of Mg minerals primarily as MgO crystal on the surface by the surface modification with MgCl2. When the pristine biochars were surface-modified with MgCl2, their adsorption capacities for CR were significantly increased over the entire pH range tested. The CR adsorption process by all biochars was best described with the pseudo-first order kinetics model, and the adsorption isotherm characteristics were better described with the Langmuir isotherm model for all biochars. The Langmuir maximum adsorption capacities for KB-Mg and PB-Mg were 423.0 mg/g and 394.7 mg/g, respectively. It is suggested that the main mechanism for CR adsorption on the Mg-biochars is electrostatic attraction between CR and the biochars.Conclusions : The results showed that surface modification with MgCl2 could greatly enhance the CR adsorption capacity of biochars, and the results demonstrated the great potential of KB-Mg and PB-Mg for CR removal.


RSC Advances ◽  
2016 ◽  
Vol 6 (80) ◽  
pp. 76795-76801 ◽  
Author(s):  
Melad Shaikh ◽  
Mahendra Sahu ◽  
Kiran Kumar Atyam ◽  
Kalluri V. S. Ranganath

5-Hydroxymethylfurfural (5-HMF) has been synthesized under solvent free conditions using surface modified ferrite nanoparticles. The flexible ligand modified ferrites showed higher activity than rigid modified ferrites.


Author(s):  
Dhritiman Banerjee ◽  
Payal Banerjee ◽  
Asit Kumar Kar

The effects of surface modification on the defect state densities, optical properties, photocatalytic and quantum efficiencies of zinc oxide (ZnO) nanoplates have been studied in this work. Here, the aim...


Author(s):  
Vamsi Krishna Balla ◽  
Mitun Das ◽  
Someswar Datta ◽  
Biswanath Kundu

This chapter examines the importance of surface characteristics such as microstructure, composition, crystallographic texture, and surface free energy in achieving desired biocompatibility and tribological properties thereby improving in vivo life of artificial articulating implants. Current implants often fail prematurely due to inadequate mechanical, tribological, biocompatibility, and osseointegration properties, apart from issues related to design and surgical procedures. For long-term in vivo stability, artificial implants intended for articulating joint replacement must exhibit long-term stable articulation surface without stimulating undesirable in vivo effects. Since the implant's surface plays a vital and decisive role in their response to biological environment, and vice versa, surface modification of implants assumes a significant importance. Therefore, overview on important surface modification techniques, their capabilities, properties of modified surfaces/implants are presented in the chapter. The clinical performance of surface modified implants and new surfaces for potential next-generation articulating implant applications are discussed at the end.


2019 ◽  
Vol 289 ◽  
pp. 04006
Author(s):  
Cynthia Morales Cruz ◽  
Michael Raupach

In the context of the application of carbon Textile Reinforced Concrete (TRC) layers for the durable repair of building surfaces, uniaxial tensile tests on rectangular TRC samples were carried out to compare the bond and load-bearing behavior of an epoxy-impregnated carbon textile and its surface modified version. The aim of the surface modification, consisting of a subsequent coating with epoxy resin and sanding with quartz sand, is the improvement of the composite material regarding crack width reduction and an increase of the load-bearing capacity. A total of 15 series were examined and the parameters: reinforcement type, orientation and ratio were varied. In addition, long-term load tests were conducted. An optical 3D-video measuring system in combination with a DIC-software was used, which allowed the analysis of the process of crack formation during the entire testing time. With the surface modified reinforcement the formation of approx. 1.5 times the number of cracks with averagely 33 % smaller crack widths and up to 50 % smaller crack spacings were observed, regardless of the ratio of reinforcement. The residual behaviour of the series subjected to a permanent load of 1500 MPa over 1000 h showed no reduction of the tensile stress compared to short-term tests.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Jung Eun Park ◽  
Il Song Park ◽  
Tae Sung Bae ◽  
Min Ho Lee

Titanium (Ti) is often used as an orthopedic and dental implant material due to its better mechanical properties, corrosion resistance, and excellent biocompatibility. Formation of TiO2nanotubes (TiO2NTs) on titanium is an interesting surface modification to achieve controlled drug delivery and to promote cell growth. Carbon nanotubes (CNTs) possess excellent chemical durability and mechanical strength. The use of CNTs in biomedical applications such as scaffolds has received considerable attention in recent years. The present study aims to modify the surface of titanium by anodizing to form TiO2NTs and subsequently deposit CNTs over it by electrophoretic deposition (EPD). Characteristic, biocompatibility, and apatite forming ability of the surface modified samples were evaluated. The results of the study reveal that CNTs coating on TiO2nanotubes help improve the biological activity and this type of surface modification is highly suitable for biomedical applications.


RSC Advances ◽  
2018 ◽  
Vol 8 (1) ◽  
pp. 38-43 ◽  
Author(s):  
Souvanik Talukdar ◽  
Rupali Rakshit ◽  
André Krämer ◽  
Frank A. Müller ◽  
Kalyan Mandal

We have developed bio-compatible magneto-fluorescent NiFe2O4 nanoparticles (NPs) by modifying the surface of the NPs with Na-tartrate. The surface modified NiFe2O4 NPs are beneficial for cell imaging, wastewater treatment and therapeutics.


2012 ◽  
Vol 581-582 ◽  
pp. 77-80
Author(s):  
Qiu Shi Tang ◽  
Hong Tao Lei ◽  
Long Bin Huang ◽  
Yuan Ming Sun ◽  
Jin Yi Yang

For the generation of antibodies against small hapten molecules, the hapten is cross-linked with some carrier protein to make it immunogenic. However, it was rarely systematically studied about the effect of modified carrier protein on the obtained antibody nature. In this study, folic acid as the model hapten was coupled to natural and surface-modified bovine serum albumin (BSA) using modifying agent amidocaproic acid (ACA) and hexamethylene diamine (HDA). The three immunogens of FA-BSA, FA-ACA-BSA, FA-HDA-BSA were confirmed by SDS-PAGE and ultraviolet spectrum (UV). The Balb/C mice were immunized with the artificial antigen to obtain three specific antibody with indirect competitive enzyme-linked immunosorbent assay (icELISA) method to compare the performance of antibodies obtained based on different imunogen. The results indicate that the conjugates were successfully synthesized and the coupling ratio from the high to the low was HDA-BSA > ACA-BSA > BSA, while the titer of antibody was ACA-BSA > BSA >HDA-BSA and the IC50was HDA-BSA < ACA-BSA < BSA. This suggests that sensitivity of antibody was improved by cationizing the carrier protein.


Sign in / Sign up

Export Citation Format

Share Document