scholarly journals The atypical Rho GTPase Rnd2 is critical for dentate granule neuron development and anxiety-like behavior during adult but not neonatal neurogenesis

Author(s):  
Thomas Kerloch ◽  
Fanny Farrugia ◽  
Lou Bouit ◽  
Marlène Maître ◽  
Geoffrey Terral ◽  
...  

AbstractDespite the central role of Rho GTPases in neuronal development, their functions in adult hippocampal neurogenesis remain poorly explored. Here, by using a retrovirus-based loss-of-function approach in vivo, we show that the atypical Rho GTPase Rnd2 is crucial for survival, positioning, somatodendritic morphogenesis, and functional maturation of adult-born dentate granule neurons. Interestingly, most of these functions are specific to granule neurons generated during adulthood since the deletion of Rnd2 in neonatally-born granule neurons only affects dendritogenesis. In addition, suppression of Rnd2 in adult-born dentate granule neurons increases anxiety-like behavior whereas its deletion in pups has no such effect, a finding supporting the adult neurogenesis hypothesis of anxiety disorders. Thus, our results are in line with the view that adult neurogenesis is not a simple continuation of earlier processes from development, and establish a causal relationship between Rnd2 expression and anxiety.

2020 ◽  
Author(s):  
Thomas Kerloch ◽  
Fanny Farrugia ◽  
Marlène Maître ◽  
Geoffrey Terral ◽  
Muriel Koehl ◽  
...  

ABSTRACTDespite the central role of Rho GTPases in neuronal development, their functions in adult hippocampal neurogenesis remain poorly explored. Here, by using a retrovirus-based loss-of-function approach in vivo, we show that the atypical Rho GTPase Rnd2 is crucial for the survival, positioning, somatodendritic morphogenesis and functional maturation of adult-born dentate granule neurons. Interestingly, most of these functions are specific to granule neurons generated during adulthood since the deletion of Rnd2 in neonatally-born granule neurons only affects dendritogenesis. In addition, suppression of Rnd2 in adult-born dentate granule neurons increases anxiety-like behaviour whereas its deletion in pups has no such effect, a finding supporting the adult neurogenesis hypothesis of anxiety disorders. Thus, our results provide mechanistic insight into the differential regulation of hippocampal neurogenesis during development and adulthood, and establishes a causal relationship between Rnd2 expression and anxiety.


2021 ◽  
Vol 13 ◽  
Author(s):  
Fanny Ehret ◽  
Ricardo Moreno Traspas ◽  
Marie-Theres Neumuth ◽  
Bianca Hamann ◽  
Daniela Lasse ◽  
...  

We and others have reported that Notch3 is a regulator of adult hippocampal neurogenesis. Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL), the most common genetic form of vascular dementia, is caused by mutations in Notch3. The present study intended to investigate whether there is a correlation between altered adult hippocampal neurogenesis and spatial memory performance in CADASIL transgenic mice. To overcome visual disabilities that hampered behavioral testing of the original mice (on an FVB background) we back-crossed the existing TgN3R169C CADASIL mouse model onto the C57BL/6J background. These animals showed an age-dependent increase in the pathognomonic granular osmiophilic material (GOM) deposition in the hippocampus. Analysis in the Morris water maze task at an age of 6 and 12 months revealed deficits in re-learning and perseverance in the CADASIL transgenic mice. Overexpression of Notch3 alone resulted in deficits in the use of spatial strategies and diminished adult neurogenesis in both age groups. The additional CADASIL mutation compensated the effect on strategy usage but not on adult neurogenesis. In brain bank tissue samples from deceased CADASIL patients we found signs of new neurons, as assessed by calretinin immunohistochemistry, but no conclusive quantification was possible. In summary, while our study confirmed the role of Notch3 in adult neurogenesis, we found a specific effect of the CADASIL mutation only on the reversion of the Notch3 effect on behavior, particularly visible at 6 months of age, consistent with a loss of function. The mutation did not revert the Notch3-dependent changes in adult neurogenesis or otherwise affected adult neurogenesis in this model.


2016 ◽  
Vol 7 (1) ◽  
Author(s):  
Hongsheng Zhang ◽  
Eunchai Kang ◽  
Yaqing Wang ◽  
Chaojuan Yang ◽  
Hui Yu ◽  
...  

AbstractSeveral genome- and proteome-wide studies have associated transcription and translation changes ofCRMP2(collapsing response mediator protein 2) with psychiatric disorders, yet little is known about its function in the developing or adult mammalian brainin vivo. Here we show that brain-specificCrmp2knockout (cKO) mice display molecular, cellular, structural and behavioural deficits, many of which are reminiscent of neural features and symptoms associated with schizophrenia. cKO mice exhibit enlarged ventricles and impaired social behaviour, locomotor activity, and learning and memory. Loss ofCrmp2in the hippocampus leads to reduced long-term potentiation, abnormal NMDA receptor composition, aberrant dendrite development and defective synapse formation in CA1 neurons. Furthermore, knockdown ofcrmp2specifically in newborn neurons results in stage-dependent defects in their development during adult hippocampal neurogenesis. Our findings reveal a critical role for CRMP2 in neuronal plasticity, neural function and behavioural modulation in mice.


2021 ◽  
Vol 80 (5) ◽  
pp. 467-475
Author(s):  
Yu-Qing Li ◽  
C Shun Wong

Abstract 5′-Adenosine monophosphate-activated protein kinase (AMPK), a key regulator of cellular energy homeostasis, plays a role in cell fate determination. Whether AMPK regulates hippocampal neuronal development remains unclear. Hippocampal neurogenesis is abrogated after DNA damage. Here, we asked whether AMPK regulates adult hippocampal neurogenesis and its inhibition following irradiation. Adult Cre-lox mice deficient in AMPK in brain, and wild-type mice were used in a birth-dating study using bromodeoxyuridine to evaluate hippocampal neurogenesis. There was no evidence of AMPK or phospho-AMPK immunoreactivity in hippocampus. Increase in p-AMPK but not AMPK expression was observed in granule neurons and subgranular neuroprogenitor cells (NPCs) in the dentate gyrus within 24 hours and persisted up to 9 weeks after irradiation. AMPK deficiency in Cre-lox mice did not alter neuroblast and newborn neuron numbers but resulted in decreased newborn and proliferating NPCs. Inhibition of neurogenesis was observed after irradiation regardless of genotypes. In Cre-lox mice, there was further loss of newborn early NPCs and neuroblasts but not newborn neurons after irradiation compared with wild-type mice. These results are consistent with differential negative effect of AMPK on hippocampal neuronal development and its inhibition after irradiation.


2021 ◽  
Vol 22 (14) ◽  
pp. 7339
Author(s):  
Julia Leschik ◽  
Beat Lutz ◽  
Antonietta Gentile

Newborn neurons in the adult hippocampus are regulated by many intrinsic and extrinsic cues. It is well accepted that elevated glucocorticoid levels lead to downregulation of adult neurogenesis, which this review discusses as one reason why psychiatric diseases, such as major depression, develop after long-term stress exposure. In reverse, adult neurogenesis has been suggested to protect against stress-induced major depression, and hence, could serve as a resilience mechanism. In this review, we will summarize current knowledge about the functional relation of adult neurogenesis and stress in health and disease. A special focus will lie on the mechanisms underlying the cascades of events from prolonged high glucocorticoid concentrations to reduced numbers of newborn neurons. In addition to neurotransmitter and neurotrophic factor dysregulation, these mechanisms include immunomodulatory pathways, as well as microbiota changes influencing the gut-brain axis. Finally, we discuss recent findings delineating the role of adult neurogenesis in stress resilience.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Aya Mikdache ◽  
Marie-José Boueid ◽  
Lorijn van der Spek ◽  
Emilie Lesport ◽  
Brigitte Delespierre ◽  
...  

AbstractThe Regulator of G protein signaling 4 (Rgs4) is a member of the RGS proteins superfamily that modulates the activity of G-protein coupled receptors. It is mainly expressed in the nervous system and is linked to several neuronal signaling pathways; however, its role in neural development in vivo remains inconclusive. Here, we generated and characterized a rgs4 loss of function model (MZrgs4) in zebrafish. MZrgs4 embryos showed motility defects and presented reduced head and eye sizes, reflecting defective motoneurons axon outgrowth and a significant decrease in the number of neurons in the central and peripheral nervous system. Forcing the expression of Rgs4 specifically within motoneurons rescued their early defective outgrowth in MZrgs4 embryos, indicating an autonomous role for Rgs4 in motoneurons. We also analyzed the role of Akt, Erk and mechanistic target of rapamycin (mTOR) signaling cascades and showed a requirement for these pathways in motoneurons axon outgrowth and neuronal development. Drawing on pharmacological and rescue experiments in MZrgs4, we provide evidence that Rgs4 facilitates signaling mediated by Akt, Erk and mTOR in order to drive axon outgrowth in motoneurons and regulate neuronal numbers.


2021 ◽  
Vol 13 ◽  
Author(s):  
Domenica Donatella Li Puma ◽  
Roberto Piacentini ◽  
Claudio Grassi

Adult hippocampal neurogenesis is a physiological mechanism contributing to hippocampal memory formation. Several studies associated altered hippocampal neurogenesis with aging and Alzheimer's disease (AD). However, whether amyloid-β protein (Aβ)/tau accumulation impairs adult hippocampal neurogenesis and, consequently, the hippocampal circuitry, involved in memory formation, or altered neurogenesis is an epiphenomenon of AD neuropathology contributing negligibly to the AD phenotype, is, especially in humans, still debated. The detrimental effects of Aβ/tau on synaptic function and neuronal viability have been clearly addressed both in in vitro and in vivo experimental models. Until some years ago, studies carried out on in vitro models investigating the action of Aβ/tau on proliferation and differentiation of hippocampal neural stem cells led to contrasting results, mainly due to discrepancies arising from different experimental conditions (e.g., different cellular/animal models, different Aβ and/or tau isoforms, concentrations, and/or aggregation profiles). To date, studies investigating in situ adult hippocampal neurogenesis indicate severe impairment in most of transgenic AD mice; this impairment precedes by several months cognitive dysfunction. Using experimental tools, which only became available in the last few years, research in humans indicated that hippocampal neurogenesis is altered in cognitive declined individuals affected by either mild cognitive impairment or AD as well as in normal cognitive elderly with a significant inverse relationship between the number of newly formed neurons and cognitive impairment. However, despite that such information is available, the question whether impaired neurogenesis contributes to AD pathogenesis or is a mere consequence of Aβ/pTau accumulation is not definitively answered. Herein, we attempted to shed light on this complex and very intriguing topic by reviewing relevant literature on impairment of adult neurogenesis in mouse models of AD and in AD patients analyzing the temporal relationship between the occurrence of altered neurogenesis and the appearance of AD hallmarks and cognitive dysfunctions.


2019 ◽  
Vol 218 (10) ◽  
pp. 3397-3414 ◽  
Author(s):  
Jordan T. Silver ◽  
Frederik Wirtz-Peitz ◽  
Sérgio Simões ◽  
Milena Pellikka ◽  
Dong Yan ◽  
...  

The spatio-temporal regulation of small Rho GTPases is crucial for the dynamic stability of epithelial tissues. However, how RhoGTPase activity is controlled during development remains largely unknown. To explore the regulation of Rho GTPases in vivo, we analyzed the Rho GTPase guanine nucleotide exchange factor (RhoGEF) Cysts, the Drosophila orthologue of mammalian p114RhoGEF, GEF-H1, p190RhoGEF, and AKAP-13. Loss of Cysts causes a phenotype that closely resembles the mutant phenotype of the apical polarity regulator Crumbs. This phenotype can be suppressed by the loss of basolateral polarity proteins, suggesting that Cysts is an integral component of the apical polarity protein network. We demonstrate that Cysts is recruited to the apico-lateral membrane through interactions with the Crumbs complex and Bazooka/Par3. Cysts activates Rho1 at adherens junctions and stabilizes junctional myosin. Junctional myosin depletion is similar in Cysts- and Crumbs-compromised embryos. Together, our findings indicate that Cysts is a downstream effector of the Crumbs complex and links apical polarity proteins to Rho1 and myosin activation at adherens junctions, supporting junctional integrity and epithelial polarity.


2019 ◽  
Vol 20 (12) ◽  
pp. 3030 ◽  
Author(s):  
Soo Jung Shin ◽  
Seong Gak Jeon ◽  
Jin-il Kim ◽  
Yu-on Jeong ◽  
Sujin Kim ◽  
...  

Alzheimer’s disease (AD) is the most common neurodegenerative disease and is characterized by neurodegeneration and cognitive deficits. Amyloid beta (Aβ) peptide is known to be a major cause of AD pathogenesis. However, recent studies have clarified that mitochondrial deficiency is also a mediator or trigger for AD development. Interestingly, red ginseng (RG) has been demonstrated to have beneficial effects on AD pathology. However, there is no evidence showing whether RG extract (RGE) can inhibit the mitochondrial deficit-mediated pathology in the experimental models of AD. The effects of RGE on Aβ-mediated mitochondrial deficiency were investigated in both HT22 mouse hippocampal neuronal cells and the brains of 5XFAD Aβ-overexpressing transgenic mice. To examine whether RGE can affect mitochondria-related pathology, we used immunohistostaining to study the effects of RGE on Aβ accumulation, neuroinflammation, neurodegeneration, and impaired adult hippocampal neurogenesis in hippocampal formation of 5XFAD mice. In vitro and in vivo findings indicated that RGE significantly improves Aβ-induced mitochondrial pathology. In addition, RGE significantly ameliorated AD-related pathology, such as Aβ deposition, gliosis, and neuronal loss, and deficits in adult hippocampal neurogenesis in brains with AD. Our results suggest that RGE may be a mitochondria-targeting agent for the treatment of AD.


2020 ◽  
Vol 29 (12) ◽  
pp. 1950-1968
Author(s):  
Charlotte Castillon ◽  
Laurine Gonzalez ◽  
Florence Domenichini ◽  
Sandrine Guyon ◽  
Kevin Da Silva ◽  
...  

Abstract The link between mutations associated with intellectual disability (ID) and the mechanisms underlying cognitive dysfunctions remains largely unknown. Here, we focused on PAK3, a serine/threonine kinase whose gene mutations cause X-linked ID. We generated a new mutant mouse model bearing the missense R67C mutation of the Pak3 gene (Pak3-R67C), known to cause moderate to severe ID in humans without other clinical signs and investigated hippocampal-dependent memory and adult hippocampal neurogenesis. Adult male Pak3-R67C mice exhibited selective impairments in long-term spatial memory and pattern separation function, suggestive of altered hippocampal neurogenesis. A delayed non-matching to place paradigm testing memory flexibility and proactive interference, reported here as being adult neurogenesis-dependent, revealed a hypersensitivity to high interference in Pak3-R67C mice. Analyzing adult hippocampal neurogenesis in Pak3-R67C mice reveals no alteration in the first steps of adult neurogenesis, but an accelerated death of a population of adult-born neurons during the critical period of 18–28 days after their birth. We then investigated the recruitment of hippocampal adult-born neurons after spatial memory recall. Post-recall activation of mature dentate granule cells in Pak3-R67C mice was unaffected, but a complete failure of activation of young DCX + newborn neurons was found, suggesting they were not recruited during the memory task. Decreased expression of the KCC2b chloride cotransporter and altered dendritic development indicate that young adult-born neurons are not fully functional in Pak3-R67C mice. We suggest that these defects in the dynamics and learning-associated recruitment of newborn hippocampal neurons may contribute to the selective cognitive deficits observed in this mouse model of ID.


Sign in / Sign up

Export Citation Format

Share Document